Ремонт
Плитка для фасада постройки 8-11-2012, 10:05

Плитка для фасада постройки

Владельцы недвижимости за городом часто задаются вопросом защиты и украшения различных строений от внешних негативных факторов. Сп...

Как находить площадь


Как найти площадь геометрических фигур?

Что такое площадь?

Площадь – характеристика замкнутой геометрической фигуры (круг, квадрат, треугольник и т.д.), которая показывает ее размер. Площадь измеряется в квадратных сантиметрах, метрах и т.д. Обозначается буквой S (square).

Треугольник

Прямоугольник

Квадрат

Параллелограмм

Ромб

Трапеция

Круг

Как найти площадь треугольника?

1. Самая известная формула площади треугольника по стороне и высоте:

S = a · h

где a – длина основания, h  – высота треугольника, проведенная к основанию.

Причем, основание не обязательно должно находиться снизу. Так тоже сойдет.

Если треугольник тупоугольный, то высота опускается на продолжение основания:

Если треугольник прямоугольный, то основанием и высотой являются его катеты:

2. Другая формула, которая является не менее полезной, но которую почему-то всегда забывают:

S =   a · b · sinα  

где a и b – две стороны треугольника,  sinα  – синус угла между этими сторонами.

Главное условие – угол берется между двумя известными сторонами.

3. Формула площади по трем сторонам (формула Герона):

S =  

где a, b и с – стороны треугольника, а р – полупериметр. p = (a + b + c)/2.

4. Формула площади треугольника через радиус описанной окружности:

S =  

где a, b и с – стороны треугольника, а R – радиус описанной окружности.

5. Формула площади треугольника через радиус вписанной окружности:

S =p · r

где р – полупериметр треугольника, а r – радиус вписанной окружности.

Как найти площадь прямоугольника?

1. Площадь прямоугольника находится довольно-таки просто:

S = a · b

Никаких подвохов.

Как найти площадь квадрата?

1. Так как квадрат является прямоугольником, у которого все стороны равны, то к нему применяется такая же формула:

S = a · a = a2

2. Также площадь квадрата можно найти через его диагональ:

S =   d2

Как найти площадь параллелограмма?

1. Площадь параллелограмма находится по формуле:

S = a · h

Это связано с тем, что если от него отрезать прямоугольный треугольник справа и приставить его слева, получится прямоугольник:

2. Также площадь параллелограмма можно найти через угол между двумя сторонами:

S = a · b · sinα

Как найти площадь ромба?

Ромб по своей сути является параллелограммом, у которого все стороны равны. Поэтому для него применяются те же формулы площади.

1. Площадь ромба через высоту:

S = a · h

2. Площадь ромба через угол между сторонами:

S = a · a sinα = a2 · sinα

3. Площадь ромба через диагонали:

S =   d1 · d2

Как найти площадь трапеции?

1. Площадь трапеции находится по следующей формуле:

S =   · h 

Как найти площадь круга?

1. Площадь круга можно найти через радиус:

S = π r2 

2. Площадь круга можно найти через диаметр:

S = πd2/4

boeffblog.ru

Формулы площади геометрических фигур.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

  1. Формула площади треугольника по стороне и высоте Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам

    S = √p(p - a)(p - b)(p - c)

  3. Формула площади треугольника по двум сторонам и углу между ними Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности. где S - площадь треугольника, a, b, c - длины сторон треугольника, h - высота треугольника, γ - угол между сторонами a и b, r - радиус вписанной окружности, R - радиус описанной окружности,
    p = a + b + c  - полупериметр треугольника.
    2
  1. Формула площади параллелограмма по длине стороны и высоте Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними. где S - Площадь параллелограмма, a, b - длины сторон параллелограмма, h - длина высоты параллелограмма, d1, d2 - длины диагоналей параллелограмма, α - угол между сторонами параллелограмма, γ - угол между диагоналями параллелограмма.
  1. Формула площади ромба по длине стороны и высоте Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей Площадь ромба равна половине произведению длин его диагоналей. где S - Площадь ромба, a - длина стороны ромба, h - длина высоты ромба, α - угол между сторонами ромба, d1, d2 - длины диагоналей.
  1. Формула Герона для трапеции
    S = a + b√(p-a)(p-b)(p-a-c)(p-a-d)
    |a - b|
  2. Формула площади трапеции по длине основ и высоте Площадь трапеции равна произведению полусуммы ее оснований на высоту где S - площадь трапеции, a, b - длины основ трапеции, c, d - длины боковых сторон трапеции,
    p = a + b + c + d  - полупериметр трапеции.
    2
  1. Формула площади четырехугольника по длине диагоналей и углу между ними Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними: где S - площадь четырехугольника, d1, d2 - длины диагоналей четырехугольника, α - угол между диагоналями четырехугольника.
  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности) Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p - a)(p - b)(p - c)(p - d) - abcd cos2θ

    где S - площадь четырехугольника,

    a, b, c, d - длины сторон четырехугольника,

    p = a + b + c + d2  - полупериметр четырехугольника,

    θ = α + β2  - полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p - a)(p - b)(p - c)(p - d)

  1. Формула площади круга через радиус Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр Площадь круга равна четверти произведения квадрата диаметра на число пи. где S - Площадь круга, r - длина радиуса круга, d - длина диаметра круга.

© 2011-2019 Довжик МихаилКопирование материалов запрещено.

Добро пожаловать на OnlineMSchool. Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне [email protected]school.com

ru.onlinemschool.com

Формулы площади

Стандартное обозначение площади - S

Площадь

Пусть длина стороны квадрата равна a, тогда формул квадрата:

S = a ⋅ a = a2

Пусть длины сторон прямоугольника равны a и b

S = a ⋅ b

Пусть длины сторон параллелограмма равны a и b и ha это высота на сторону a, и hb это высота на сторону b Формула площади параллелограмма:

S = a ⋅ ha = b ⋅ hb

Допустим, что длины параллельных сторон трапеции имеют длину a и b и расстояние между двумя основами s h(the trapezoid altitude). Тогда формула площади:

$S = \frac{(a + b)\cdot h}{2}$

$P = \pi\cdot r^2$

$\pi=3,14$

Площадь прямоугольного треугольника

$S=\frac{a \cdot b}{2}$

$S=\frac{c \cdot h_c}{2}$

Площадь треугольника - калькулятор
Стороны треугольника:

ABC - треугольник

длина его сторон: a, b, c и длина его высот: ha, hb и hc.

S = ½(a ⋅ ha) = ½(b ⋅ hb) = ½(c ⋅ hc)

S = ½(ab ⋅ sinC) = ½(ac ⋅ sinB) = ½(bc ⋅ sinA)

p = ½(a + b + c)

S = √p(p - a)(p - b)(p - c) - формула Герона

$S = R^2\sin(A) \cdot \sin(B) \cdot \sin(C) = \frac{abc}{4R}$

где R - радиус описанной окружности

$S = AB\cdot DE = BC \cdot DF$ $S = AB \cdot AD \sin \alpha$

$S = \frac12 AC \cdot BD \sin \gamma$

Площадь выпуклого четырехугольника

$S = \frac12 AC \cdot BD \sin \varphi $

Площадь правильного многоугольника

$S = \frac14 n\cdot a^2\cdot \text{ctg}(\frac{\pi}{n})$

n - число ребер(вершин). $\pi=3,14159265359$

www.math10.com

Как вычислить площадь: формулы расчета для разных фигур, знаки обозначения, единицы измерения

Знания о том, как измерить Землю, появились еще в древности и постепенно оформились в науку геометрию. С греческого языка это слово так и переводится — «землемерие».

Мерой протяжённости плоского участка Земли по длине и ширине является площадь. В математике она обычно обозначается латинской буквой S (от англ. «square» — «площадь», «квадрат») или греческой буквой σ (сигма). S обозначает площадь фигуры на плоскости или площадь поверхности тела, а σ – площадь поперечного сечения провода в физике. Это основные символы, хотя могут быть и другие, например, в сфере сопротивления материалов, А — площадь сечения профиля.

Оглавление:

  • Формулы расчета
  • Треугольник
  • Четырёхугольник
  • Многоугольник
  • Круг
  • Единицы измерения

Формулы расчета

Зная площади простых фигур, можно находить параметры более сложных. Античными математиками были выведены формулы, по которым можно легко их вычислять. Такими фигурами являются треугольник, четырёхугольник, многоугольник, круг.

Чтобы найти площадь сложной плоской фигуры, её разбивают на множество простых фигур, таких как треугольники, трапеции или прямоугольники. Затем математическими методами выводят формулу для площади этой фигуры. Подобный метод используют не только в геометрии, но и в математическом анализе для вычисления площадей фигур, ограниченных кривыми.

Это интересно: какой вектор называется разностью двух векторов?

Треугольник

Начнём с самой простой фигуры — треугольника. Они бывают прямоугольные, равнобедренные и равносторонние. Возьмём любой треугольник ABC со сторонами AB=a, BC=b и AC=c (∆ ABC). Чтобы найти его площадь, вспомним известные из школьного курса математики теоремы синусов и косинусов. Отпуская все выкладки, придём к следующим формулам:

  • S=√[p•(p-a)•(p-b)•(p-c)] — известная всем формула Герона, где p=(a+b+c)/2 — полупериметр треугольника;
  • S=a•h/2, где h — высота, опущенная на сторону a;
  • S=a•b•(sin γ)/2, где γ — угол между сторонами a и b;
  • S=a•b/2, если ∆ ABC — прямоугольный (здесь a и b — катеты);
  • S=b²•(sin (2•β))/2, если ∆ ABC — равнобедренный (здесь b — одно из «бёдер», β — угол между «бёдрами» треугольника);
  • S=a²•√¾, если ∆ ABC — равносторонний (здесь a — сторона треугольника).

Это интересно: Как найти периметр треугольника.

Четырёхугольник

Пусть имеется четырёхугольник ABCD, у которого AB=a, BC=b, CD=c, AD=d. Чтобы найти площадь S произвольного 4-угольника, нужно разделить его диагональю на два треугольника, площади которых S1 и S2 в общем случае не равны.

Затем по формулам вычислить их и сложить, т. е. S=S1+S2. Однако, если 4-угольник принадлежит к определённому классу, то его площадь можно найти по заранее известным формулам:

  • S=(a+c)•h/2=e•h, если 4-угольник — трапеция (здесь a и c — основания, e — средняя линия трапеции, h — высота, опущенная на одно из оснований трапеции;
  • S=a•h=a•b•sin φ=d1•d2•(sin φ)/2, если ABCD — параллелограмм (здесь φ — угол между сторонами a и b, h — высота, опущенная на сторону a, d1 и d2 — диагонали);
  • S=a•b=d²/2, если ABCD — прямоугольник (d — диагональ);
  • S=a²•sin φ=P²•(sin φ)/16=d1•d2/2, если ABCD — ромб (a — сторона ромба, φ — один из его углов, P — периметр);
  • S=a²=P²/16=d²/2, если ABCD — квадрат.

Многоугольник

Чтобы найти площадь n-угольника, математики разбивают его на простейшие равные фигуры —треугольники, находят площадь каждого из них и затем складывают. Но если многоугольник относится к классу правильных, то используют формулу:

S=a•n•h/2=a²•n/[4•tg (180°/n)]=P²/[4•n•tg (180°/n)], где n — количество вершин (или сторон) многоугольника, a — сторона n-угольника, P — его периметр, h — апофема, т. е. отрезок, проведённый из центра многоугольника к одной из его сторон под углом 90°.

Круг

Круг — это совершенный многоугольник, имеющий бесконечное число сторон. Нам необходимо вычислить предел выражения справа в формуле площади многоугольника при числе сторон n, стремящемуся к бесконечности. В этом случае периметр многоугольника превратится в длину окружности радиуса R, которая будет границей нашего круга, и станет равен P=2•π•R. Подставим это выражение в указанную выше формулу. Мы получим:

S=(π²•R²•cos (180°/n))/(n•sin (180°/n)).

Найдём предел этого выражения при n→∞. Чтобы это сделать, учтём, что lim (cos (180°/n)) при n→∞ равен cos 0°=1 (lim — знак предела), а lim [1/(n•sin (180°/n))]= lim [1/(n•sin (π/n))] при n→∞ равен 1/π (мы перевели градусную меру в радианную, используя соотношение π рад=180°, и применили первый замечательный предел lim (sin x)/x=1 при x→∞). Подставив в последнее выражение для S полученные значения, придём к известной формуле:

S=π²•R²•1•(1/π)=π•R².

Единицы измерения

Применяются системные и внесистемные единицы измерения. Системные единицы относятся к СИ (Система Интернациональная). Это квадратный метр (кв. метр, м²) и единицы, производные от него: мм², см², км².

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) — сечения балки в строительной механике, в квадратных метрах (м²) — квартиры или дома, в квадратных километрах (км²) — территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.

obrazovanie.guru


Смотрите также


 

Опрос
 

Кто вам делал ремонт в квартире?

Делал самостоятельно
Нанимал знакомых, друзей
Нашел по объявлению
Обращался в строй фирму

 
Все опросы
 
remnox.ru © 2012- Строительство и ремонт При копировании материалов ссылка на сайт обязательна!