Ремонт
Плитка для фасада постройки 8-11-2012, 10:05

Плитка для фасада постройки

Владельцы недвижимости за городом часто задаются вопросом защиты и украшения различных строений от внешних негативных факторов. Сп...

Подключение датчиков пожарной сигнализации схема


Схема подключения извещателей пожарных

И.Г. Неплохов Технический директор бизнес-группы «Центр-СБ», к.т.н.

os-info.ru

Проводные пожарные извещатели: требования и принцип действия

Главная / Статьи / Пожарная автоматика / Пожарные извещатели

Проводные пожарные извещатели – это по своему устройству, составу оборудования, датчиков, извещателей, исполнительных механизмов автоматические системы безопасности, защищающие различные здания, включая установки сигнализации о пожаре, являются электрическими слаботочными сетями с напряжением 12–24 В.

Наблюдается рост радиоканальных охранно-пожарных установок, но основная часть смонтированных установок, оцениваемая специалистами в районе 90%, по-прежнему относится к проводным системам.

При проектировании, монтаже автоматической сигнализации повсеместно применяется и устанавливается пожарный извещатель проводной – тепловой, дымовой, газовый для защиты помещений; датчик пламени, определяющий очаг возгорания на корпусах технологического оборудования, расположенных на открытых производственных площадках промышленных предприятий; емкостях хранения горючих жидкостей, сжиженных/сжатых газов в товарных парках, нефтебазах.

 Про все типы извещателей отдельная статья: 

Пожарные извещатели

Основные требования при установке и монтаже

СП 5.13130.2009, регулирующий нормативные требования при создании структур/схем пожарной сигнализации, стационарных систем тушения пожаров, указывает, что соединительные линии систем противопожарной автоматики – шлейфы; и питающие, объединительные, магистральные линии связи между элементами – извещателями, оповещателями, приборами, блоками приема данных, контроля, управления исполнительными механизмами, коммутационными устройствами бывают проводными и беспроводными каналами.

При этом должны выполняться следующие условия:

  • Должна быть обеспечена, требуемая нормами, достоверность передачи данных; непрерывный автоматический контроль по всей протяженности, длине расстояния между датчиками, приборами контроля/управления, исполнительными устройствами. На практике, учитывая несовершенство современной радиосвязи, проводные извещатели о пожаре, установленные согласно проектным решениям, с соблюдением правил ведения электромонтажных работ; намного надежнее, работоспособнее радиоканальных датчиков в составе систем АПС, включая WI-FI, сотовые GSM пожарные извещатели, при прочих равных условиях как монтажа, так и регулярного технического сервиса.
  • Выбор проводов, кабелей связи, к разводке линий которых при монтаже проводных пожарных извещателей они будут подключаться, должен осуществляться по требованиям ГОСТ 31565-2012 “Кабельные изделия. Требования пожарной безопасности”; а также данным технических паспортов, эксплуатационной документации на изделия от компании производителя.
  • Включение таких автоматических извещателей в шлейфы установок/систем пожарной сигнализации должно выполняться самостоятельным проводом/кабелем исключительно с жилами из меди; диаметр которых определяется расчетом в составе проекта АПС на защищаемый объект исходя из допустимого падения напряжения в электрической цепи; но в любом случае быть не меньше 0, 5 мм.
  • Проводные шлейфы, соединительные/магистральные линии подключения к приборам контроля/управления установок АПС необходимо выполнять проводами связи, если проектом или техническими требованиями не предусмотрено использование специальной продукции, например, огнестойких или бронированных/экранированных кабелей.
  • При этом стойкость к тепловому, огневому воздействию такой кабельно-проводной продукции должна обеспечивать нормативное время выполнения задач, возложенных на все технические средства противопожарной автоматики, включая проводные извещатели. Достигается это как правильным выбором огнестойкой кабельной продукции, но и видов, типов исполнения проводных пожарных извещателей, способами подключения проводов к ним.
  • При наличии в шлейфах проводных ИП, определить работоспособность которых визуальным осмотром по каким-либо причинам затруднительно или невозможно, например, из-за закрытия большинства помещений здания по окончании рабочего дня, смены, дежурства; то необходима установка выносных оптических индикаторов, устройств с проблесковым сигналом над дверями защищаемых помещений, а также в конце каждого такого шлейфа сигнализации.

В ГОСТ 53325-2012, НПБ 76-98 о требованиях ко всем видам, типам пожарных извещателей также уточняется способ электрического питания проводных датчиков:

  • С питанием по шлейфу сигнализации.
  • Питаемые по самостоятельному/отдельному кабелю.
  • С питанием от автономного источника.
Примеры схем подключения проводных извещателей

Кроме того, согласно вышеуказанных нормативных документов:

  • ИП в составе проводных установок АПС, должны иметь электрическую совместимость с приборами контроля/управления.
  • ИП, имеющие базовое монтажное основание, обычно это извещатель пожарный дымовой проводной или максимально-дифференциальный тепловой датчик, должны выдавать на приемно-контрольную аппаратуру тревожный сигнал о неисправности при изъятии изделия из монтажного гнезда, разрыве электрического контакта с ним по другим причинам.
  • Клеммы пожарных датчиков или их базовых установочных основ, что предназначены для эксплуатации с проводными шлейфами установок АПС, должны выполняться с возможностью подключения проводов, кабелей связи, имеющих площадь сечения не меньше 0,125 мм2, а их максимальное значение необходимо указывать в технической документации на изделие.

При этом каждая соединительная клемма проводного ИП должна быть изготовлена так, чтобы осуществлять подключение двух проводников без скрутки; или иметь дублирование для исключения прямого контакта между жилами, а только через клеммы.

Принцип действия проводных извещателей

Не отличается от способа реагирования других видов пожарных датчиков, включенных в радиоканальные, оптико-волоконные или комбинированные шлейфы передачи данных от пожарных извещателей к «ядру» установки системы АПС – блоку, прибору станции приема информации, контроля за работоспособностью всех элементов в схеме/структуре системы безопасности, управлением исполнительных устройств, подаче командного сигнала на запуск, остановку интегрированных, сблокированных инженерных сетей, технологических процессов.

Передача контрольных данных, сигнала тревоги по замыканию или размыканию электрической цепи проводным пожарным извещателем – это надежный, проверенный десятилетиями эксплуатации установок АПС, систем пожаротушения, способ, который по-прежнему востребован.

Конструкция проводного пожарного извещателя, кроме чувствительного элемента, реагирующего на дым, газ, тепло или пламя; пластикового или металлического корпуса, в обязательном порядке имеет в своем составе клеммы – винтовые или зажимные соединения для подключения к нему жил проводов связи только шлейфа сигнализации, по которому осуществляется как передача данных, так и электрическое питание, если это, например, извещатель пожарный дымовой 2-х проводной; а также для электрического провода/кабеля от резервированного источника питания, если это 4-х проводной ИП, включенный в соответствующую схему установки АПС.

Электрические параметры проводных пожарных извещателей, способы их включения в различные шлейфы сигнализации, совместимость с приемно-контрольными приборами разных компаний изготовителей, торговых марок указываются в технической документации на изделия.

 Для сведения: для подключения таких ИП к аппаратуре контроля и управления чаще всего используется следующая кабельная продукция, в т.ч. в негорючей изоляции: КСПВ/КСПЭВ 2/4х0, 5 мм; КПСВВ 2х0,5/0, 75 мм; КВВГнг 2х0,5/0, 75 мм; а для подключения приборов, блоков, панелей управления – ШВВП 2х0, 75 мм. 

К преимуществам использования проводных извещателей, установок АПС на их основе следует отнести невысокую стоимость изделий.

К недостаткам – высокие затраты, продолжительный период на монтаж оборудования.

fireman.club

Подключение комбинированных пожарных извещателей (ИДТ)

автор Администратор Главный

Обустройство надёжной пожарной безопасности в доме, сауне, квартире, офисе, на производстве требует размещения одного или нескольких пожарных извещателей. Как лучше их выбрать и установить?

Во-первых, необходимо уточнить параметры питания. Контроллер обычной сигнализации имеет ограничения по подключению дополнительного оборудования. Пожарные извещатели не являются автономными приборами и требуют постоянной подачи электроэнергии. Для увеличения количества датчиков в шлейфе, можно использовать блок расширения сигнализации. Сократить число пожарных сигнализаторов поможет установка комбинированного оборудования. Как правило, для комплексной защиты помещения от пожара требуется 2 вида извещателей – тепловые (температурные, реагирующие на пламя) и дымовые (максимально дифференциальные оптико-электронные). Совмещённые датчики пламени и задымления, имеющие условное обозначение – ИДТ (извещатель дымовой + тепловой), являются как раз тем комбинированным прибором, которые соберёт воедино 2 необходимые функции пожарного оповещения.

Схема подключения пожарного извещателя двойной сработки

Второй немаловажный момент при соблюдении основных правил установки – это выбор места. Сложно рассчитать скорость распространения пожара, но не рекомендуется удалять прибор более чем на 10 метров, от возможного источника возгорания. При создании шлейфа ОПС с большим числом сигнализаторов на складах, в производственных цехах, торговых залах, желательно соблюдать вышеуказанные правила расстановки и расстояния между приборами. Высота расположения комбинированных ИТД не имеет принципиального значения - двойная сработка сигнализации происходит по тепловым или дымовым (газовым) потокам, поднимающихся к потолку или стелящимися по полу.

Важным преимуществом комбинированных устройств является возможность их установки за подвесным потолком в квартирах, офисах, на дачах. Это позволяет сохранить целостность интерьера и не нарушать уже готовый дизайн помещения.

Третье правило монтажа пожарных извещателей, комбинированного типа – соблюдение полярности подключения. Если размещение устройства производится без базы питания (розетки), напрямую в шлейф пожарной сигнализации, обязательно провести проверку термокабеля +/- и технических характеристик контроллера сигнализации.

Выбор недорогого и эффективного пожарного извещателя

Подключение совмещённых датчиков к ПКП требует соблюдения норм и требований пожарной безопасности. Работа пожарных оповещателей тесно связана с устройствами пожаротушения и предотвращения пожаров. Порошковые огнетушители, пожарные гидранты (краны, щиты), тревожные кнопки, охранная сигнализация, пожарная сигнализация, видеокамеры наблюдения проходят совместное тестирование и сертификацию. При проверке готовых шлейфов ОПС проверяется соответствие маркировки и условных обозначений установленных детекторов.

Фото: недорогой извещатель пожарный комбинированный дымо-тепловой

Подбор типов и количества, необходимых извещателей определяется площадью помещения, его назначением (котельные, цеха, коммерческие предприятия, частные дома), бюджетом проекта и временем его исполнения. Современные комбинированные извещатели и другое пожарное оборудование поставляется в комплектации со съёмниками, позволяющими быстро установить, протестировать и зафиксировать базы для датчиков ОПС и, непосредственно, сами детекторы. Облегчить монтаж пожарных сигнализаций помогает применение беспроводных пожарных датчиков, работающих автономно, от радиобаз РПУ и не требующие дополнительных источников питания и энергоресурсов контрольных блоков сигнализации. Отсутствие дорогостоящих термокабелей в совокупности с простотой установки делают радиоканальные (беспроводные) датчики всё более востребованными среди монтажных организаций и частных лиц. В радиоуправляемый шлейф можно подключить неограниченное количество противопожарных извещателей, с различным принципом работы – аспирационные, звуковые, световые, газовые, радиоизотопные, лучевые.

Несмотря на современные веяния, многие производители обеспечивают высокую потребность в линейных адресно-аналоговых извещателях с точечным оповещением. Автоматические устройства поставляются во взрывозащищённых корпусах и расширяются внутренними микросхемами для расширения совместимости с большинством ПКП, установленными на охраняемых объектах ранее. При выборе надёжного извещателя пожара стоит обратить внимание не только на наличие понятной инструкции и схемы подключения, но и на гарантийный срок службы (минимум 5 лет), ГОСТ сертификаты, наличие условных обозначений для быстрой классификации устройства.

Продаём только качественные датчики и комплектующие для сигнализаций

Интернет магазин ГРИОН реализует датчики, сирены, извещатели, тревожные кнопки, GSM сигнализации по прайс листам, в соответствие с количеством заказанного товара (3 колонки). Предприятиям ЧОП, ведомственным структурам, ТСЖ, фирмам вневедомственной охраны предоставляются выгодные расценки (прайс под заказ) на монтаж ОПС, СКУД, GSM оборудования.

Гарантируем 100% снижение ложных срабатываний и повышение качества оповещения о несанкционированных проникновениях и пожарах на Ваших объектах!

Для владельцев квартир, дач, коттеджей, офисов предлагаются недорогие комплекты сигнализаций с комбинированными пожарными (дымо-тепловыми, радиоволновыми, максимально- дифференциальными) и охранными (объёмные, магнитоконтактные, поверхностные) извещателями. Приборы поставляются с ГОСТ сертификатами, во взрывозащищенном исполнении, с розетками питания и беспроводными радиобазами. География заказчиков ГРИОН охватывает все регионы РФ, мы работаем в Минске, Казахстане и Киеве.

{module POJAR_ALL}

www.grion.ru

02.3.1. Подключение извещателей к пороговым (неадресным) шлейфам ППК

Всем  доброго времени суток.

Сегодня более подробно о приборах приёмно-контрольных с неадресными шлейфами. Из-за дешевизны используемых в них извещателей они широко распространены на территории нашей необъятной Родины. У «буржуев» они давно вытесняются более совершенными адресными. У нас в принципе тоже, но намного медленнее: слишком велика разница в цене извещателей. От 2 до 20 раз, а при большом количестве извещателей это большие деньги.

Принцип работы неадресного порогового извещателя прост: он ступенчатым образом изменяет своё сопротивление в зависимости от состояния «норма» или «тревога». Это может быть размыкание или замыкание контактов реле (в этом случае сопротивление меняется от нуля до бесконечности — т.н. «сухой контакт») или изменение внутреннего сопротивления электронной схемы от сотен кОм до сотен Ом (т.е. примерно в тысячу раз). Шлейф обычно представляет двухпроводную линию, к которой может подключаться от одного до нескольких десятков извещателей (двухпроводная схема), причём в случае микропотребляющих извещателей, они могут быть запитаны от этого же шлейфа. В случае значительного энергопотребления извещатели запитываются по дополнительной паре проводов (четырёхпроводная схема). Поскольку ГОСТ требует для пожарных ППК контроля работоспособности шлейфов, последовательно или параллельно с извещателями типа «сухой контакт» включаются добавочные сопротивления, позволяющие отличить сработку извещателя от обрыва или короткого замыкания на шлейфе.

Я думаю, проще всё это объяснить с помощью принципиальных схем включения извещателей в шлейфы. Из того, что я знаю, наиболее адекватные описания у приборов фирмы «Болид», поэтому воспользуюсь картинками из их документации. В качестве примера использован ППКОП (прибор приёмно-контрольный охранно-пожарный) Сигнал-20М. Он имеет 20 шлейфов, типы которых могут программироваться с компьютера. Это несколько разновидностей охранных, пожарных и технологических шлейфов. Я не вижу особой необходимости подробно расписывать все тонкости этого прибора, вы сами можете прочитать это на сайте производителя: http://bolid.ru/files/373/566/signal_20m_ret_v.1.03_aug.pdf. Очень рекомендую почитать — прибор довольно функционален, имеет кучу вариантов использования, знание принципов его работы очень облегчит знакомство с другими приборами этого класса. А мы вернёмся к схемам включения извещателей в различные типы шлейфов этого прибора. Для простоты на этих рисунках извещатели изображены в виде нормальнозамкнутых (НЗК) или нормальноразомкнутых (НРК) контактов реле. Начнём с самого простого: охранные шлейфы.

На рисунке мы видим двухпроводный шлейф, в конце которого находится т.н. оконечый резистор и два типа извещателей НРК и НЗК. Резистор установлен для исключения «саботажа» — злонамеренного вмешательства в работу шлейфа: любое изменение сопротивления шлейфа более чем на 10% вызовет тревогу. Как видно из схемы, НЗК «рвут» шлейф в случае сработки извещателя, НРК наоборот закорачивают. Как я говорил раньше, охранный шлейф не контролируется на исправность: любой обрыв или закоротка шлейфа будут восприняты как тревога. Извещателей в шлейф может быть напихано достаточно много, но при этом нужно помнить — вы можете в один шлейф запихать целый этаж какого-нибудь учреждения, кучу дверей, окон и т.д. Это будет экономно, но, в случае проникновения злоумышленников или аварии шлейфа, локализовать место разрыва цепи будет весьма проблематично. Обычно мы рекомендуем по 2 охранных шлейфа на каждый кабинет в офисе: периметр (СМК на двери и окна плюс датчики разбития стекла) и объём (один или несколько датчиков движения). Основная масса охранных извещателей имеет выход на шлейф «сухой контакт» НЗК, т.е. работает на разрыв. Есть исключения, например объёмник «Рапид-3» от Сибирского Арсенала. Питается от шлейфа, сигнализирует о сработке изменением сопротивления, а, соответственно, и увеличением тока потребления с 0,25 мА до 10 мА. Включается, ясно дело, как НРК, т.е. параллельно оконечному резистору.

 Вот более продвинутый шлейф — охранный с контролем блокировки.

Ряд извещателей имеет концевой выключатель, сигнализирующий о вскрытии корпуса — тампер (о нём упоминается в главе про объёмник). Т.е. извещатель представлен для прибора двумя контактами «тревога» (сработка датчика) и «блокировка» (тампер). В дежурном режиме извещатель с добавочными резисторами представляет для прибора сопротивление двух параллельно включенных резисторов. При разрыве любой пары контактов «отваливается» подключенный к ней резистор. Т.к. номиналы резисторов отличаются на 5 кОм, прибор определяет, какое событие произошло: тревога или вскрытие корпуса. Точно так же, как и в предыдущем случае, мы можем включить в каждую цепь по нескольку извещателей, но при этом те же проблемы с локализацией места сработки. Дальше я не буду заострять на этом внимание: неадресные извещатели потому и неадресные, что не имеют своего адреса и сигнализируют о сработке шлейфа в целом, без локализации по конкретным извещателям.

Теперь о пожарных шлейфах. Вот шлейф с распознаванием сработки более чем одного извещателя с включением извещателей по схеме НРК (параллельно оконечному резистору).

Такой шлейф называется дымовым, т.к. самые ходовые точечные дымовые извещатели включаются именно по такой схеме, питаются от шлейфа и сигнализируют о сработке резким понижением сопротивления и повышением потребляемого тока. Прибор отличает срабатывание одного извещателя от двух и более за счёт присутствия в схеме добавочных токоограничивающих резисторов R. При срабатывании одного из извещателей прибор выдаёт сигнал «внимание» и обесточивает шлейф на пару секунд, тем самым перезапуская микросхему в извещателе и сбрасывая его в дежурный режим. В случае повторной сработки одного извещателя прибор ждёт в течение программируемого времени — не вернётся ли извещатель в дежурный режим и, если нет, то выдаёт сигнал пожарной тревоги. Если в течение времени ожидания сработает ещё один извещатель, прибор выдаст тревогу немедленно. Можно выставить время ожидания на бесконечность, тогда прибор перейдёт в режим тревоги только при срабатывании второго извещателя. Такая сложная тактика реакции на сработку датчиков позволяет снизить вероятность ложных срабатываний. Это очень важно, особенно, если здание оборудовано системой автоматического пожаротушения: может быть нанесён серьёзный «экономический эффект», а в ряде случаев и ущерб здоровью и жизни людей.

Кстати, можно поставить извещатели и без добавочных резисторов, тогда тревога будет происходить при срабатывании одного датчика, а это является нарушением требований Свода Правил. Оконечник убирать нельзя — прибор выдаст сигнал об обрыве шлейфа и не будет брать шлейф под охрану. Так же он отреагирует на закоротку шлейфа. Этаким способом худо-плохо выполняется пункт требований ГОСТа о контроле работоспособности шлейфа.

А вот т.н. тепловой шлейф с последовательно включенными извещателями НЗК, так же обеспечивающий определение двойной сработки.

Шлейф назван тепловым, т.к. самые дешёвые и массовые тепловые извещатели имеют внутри биметаллическое термореле, работающее при нагревании на разрыв. Хотя, конечно, и здесь есть исключения. Тепловой максимально-дифференциальный извещатель ИП101-1А-А1 питается от шлейфа, включается как дымовик, ну и ведёт себя так же. Ну а в этой схеме видно, что , срабатывая, извещатели добавляют в линию добавочные сопротивления, которые они шунтировали в дежурном состоянии, соответственно на изменение сопротивления реагирует прибор.

Кстати, заметил, что в подразделе «Извещатели» отсутствуют тепловики. Ладно, был неправ, исправлюсь в ближайшее время.

 Примечание от 04.06.2017 

 Про тепловые извещатели написал, вот здесь: Тепловые пожарные извещатели 

Ну и напоследок комбинированный пожарный шлейф с включением обоих типов извещателей.

Этот тип шлейфа не обеспечивает определения двойной сработки, поэтому стараюсь избегать такого решения. Лучше разориться на отдельный кабель для теплового шлейфа, но обеспечить срабатывание пожарной тревоги по двум извещателям. Оно как-то спокойнее.

Как уже писал, типы шлейфов задаются по интерфейсу RS-485 с компьютера, каждый тип (пожарный, охранный) и т.д. имеет свою тактику обработки сигналов сработки извещателей. Конечно они выставлены по умолчанию: часть шлейфов охранные, часть пожарные, но в 21 веке проще запрограммить прибор под свои требования. Кстати, у других приборов может быть всё по-другому. Граниты, допустим, от Сибарсенала могут программироваться внутренними перемыками или так же с компа через USB интерфейс. А, скажем БРО-5 («Броха») программируется или со специального программатора или так же по USB с использованием того же программатора в качестве преобразователя интерфейса. Видимо надо будет посвящать этому отдельную главу.

Следует помнить, что приведённые здесь номиналы резисторов актуальны только для конкретного прибора Сигнал-20М и иже с ним (Сигнал-20П, Сигнал-20). По-моему ещё Сигнал-10 в случае пороговых шлейфов (там ещё и адресно-пороговые есть, но об этом отдельно).

Можно добавить, что ИПР включаются без дополнительных резисторов, поэтому нажатие его клавиши воспринимается как срабатывание 2-х дымовиков и вызывает немедленную пожарную тревогу.

Вот ведь незадача: про ИПР-ы то я тоже не писал. Ладно, виноват, короче ИПР — это извещатель пожарный ручной: кнопка такая с надписью «при пожаре открыть крышку и нажать». В общественных местах на всех выходах установлены.

 Дополнение 

 Про ИПРы написал. Вот здесь: Извещатели пожарные ручные (ИПР) 

А радиальными эти приборы называются потому, что от них в разные стороны тянется большое количество шлейфов. В отличие от адресных шлейфов, о которых мы пообщаемся позже.

Ну и всё на сегодня. Комментируйте, подписывайтесь — форма внизу.

На главную, в начало, к оглавлению

systemdefend.ru


Подключение тепловых извещателей с индикаторами

Обеспечение работоспособности ППКП в двухпороговом режиме с формированием сигналов «Пожар 1», «Пожар 2» по одному и двум извещателям в настоящее время активно обсуждаются в отраслевой печати и на специализированных форумах. Проблемы согласования изначально определены отсутствием в документации информации о параметрах режимов шлейфов сигнализации ППКП. По п. 7.2.1.5 ГОСТ Р 53325 – 2009 «Техника пожарная. Технические средства. Пожарной автоматики. Общие технические требования. Методы испытаний» в технической документации на приемно-контрольные приборы должны быть указаны «диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений и диапазон питающих напряжений»

Проблемы согласования ИП с ППКП

В настоящее время производители ППКП указывают пороги шлейфа в виде его сопротивления, которые могут использоваться на практике только при подключении пассивных контактных пожарных извещателей с дополнительными резисторами. При использовании активных пожарных извещателей данная информация мало что дает, так как ввиду нелинейной вольт-амперной характеристики их внутреннее сопротивление в разы изменяется при различных напряжениях шлейфа. В свою очередь, напряжение шлейфа зависит от его нагрузки, то есть от сопротивления извещателей в режиме «Пожар». Таким образом, определение номиналов дополнительных резисторов проводится экспериментальным путем по двум образцам извещателей и одному образцу ППКП без учета разброса их параметров от образца к образцу и тем более в процессе эксплуатации.

Как под копирку в технических характеристиках на ДИПы указывается, что «выходной сигнал срабатывания извещателя формируется уменьшением внутреннего сопротивления до величины не более 500 Ом при величине тока через извещатель 20 мА». Слова «не более» означают, что типовое значение сопротивления может значительно отличаться от 500 Ом, а с учетом того, что достаточно много приборов имеет ток короткого замыкания порядка 20 мА, теряют смысл окончательно. Эта характеристика в паспортах ДИПов сохранилась с времен однопороговых знакопеременных шлейфов с допустимым током питания извещателей в дежурном режиме 8–10 мА, и в режиме «Пожар» при активизации пожарного извещателя лишь требовалось увеличить ток на значительную величину [1]. Чтобы при активизации нескольких дымовых извещателей не возникал режим, близкий к короткому замыканию шлейфа, в извещателях с тех пор используются стабилитроны, которые не допускают снижения напряжения шлейфа менее напряжения стабилизации независимо от числа активированных извещателей в шлейфе.

Для работы шлейфа в двухпороговом режиме требуется обеспечить стабильные характеристики ППКП и извещателя, которые в настоящее время никто не гарантирует. Обычно используемые дополнительные резисторы и оконечный резистор с 5%-ными допусками могут не обеспечить достоверное формирование сигналов «Пожар 1» при активизации одного извещателя и «Пожар 2» при активизации двух извещателей [2]. Параметры шлейфа в режимах «Пожар 1» и «Пожар 2» могут пересекаться. А в так называемом комбинированном шлейфе, рассчитанном на одновременное подключение нормально замкнутых тепловых и дымовых извещателей, то есть фактически уже в четырехпороговом шлейфе, при обрыве шлейфа за счет тока потребления дымовых извещателей формируются сигналы «Пожар 1» и «Пожар 2», как при сработке тепловых извещателей [2]. Более достоверное распознавание сработки одного и двух извещателей в шлейфе обеспечивается при использовании ППКП с адаптивными порогами «Пожар 1», «Пожар 2», величина которых программируется в соответствии с током потребления пожарных извещателей в дежурном режиме [3]. Очевидно, значительно большие возможности по проработке вопросов согласования извещателей с пожарными приборами имеют компании, выпускающие как извещатели, так и ППКП.

Требование индикации режима «Пожар»

Требования по согласованию ППКП с неадресными пожарными извещателями изложены в общем виде: в п. 4.2.1.1 ГОСТ Р 53325-2009 указано, что «извещатели пожарные, взаимодействующие с прибором приемно-контрольным пожарным, должны обеспечивать информационную и электрическую совместимость с ним», а в п. 4.2.1.3 содержится требование: «Электрические характеристики извещателей пожарных (напряжение и токи дежурного режима и режима тревожного извещения) должны быть установлены в технической документации (ТД) на извещатели пожарные конкретных типов и должны соответствовать электрическим характеристикам шлейфа пожарной сигнализации пожарного приемно-контрольного прибора, с которым предполагается использовать извещатели пожарные». Рассмотреть проблемы совместимости всего многообразия пожарных извещателей в рамках одной статьи не представляется возможным, вследствие чего ограничимся тепловыми контактными пожарными извещателями.

В документации любого ППКП приведены схемы подключения тепловых извещателей с нормально замкнутыми и нормально разомкнутыми контактами и номиналы соответственно балластных и дополнительных резисторов для работы в двухпороговом (четырехпороговом) режиме. При отсутствии дымовых извещателей в том же шлейфе никаких проблем возникать вроде бы не должно. Однако многие производители ППКП как бы не в курсе, что еще с 01.01.2001 г. на тепловые ПИ, не потребляющие электрический ток, распространяется требование п. 17.6.1 НПБ 76-98 «Извещатели пожарные. Общие технические требования. Методы испытаний» о том, что «ПИ должны содержать встроенный оптический индикатор красного цвета, включающийся в режиме передачи тревожного извещения. При невозможности установки оптического индикатора в ПИ последний должен обеспечивать возможность подключения выносного оптического индикатора или иметь другие средства для местной индикации режима передачи тревожного извещения». П. 4.2.5.1 действующего в настоящее время ГОСТ Р 53325-2009 гласит: «Извещатели пожарные должны содержать встроенный оптический индикатор, мигающий в дежурном режиме и включающийся в режиме постоянного свечения при передаче тревожного извещения. При невозможности установки оптического индикатора в извещатель пожарный последний должен обеспечивать возможность подключения выносного оптического индикатора или иметь другие средства для местной индикации дежурного режима и режима передачи тревожного извещения» с примечанием: «Требование к наличию оптического индикатора у ИПТ класса выше В и у извещателей, предназначенных для работы во взрывоопасных зонах, является рекомендуемым. Требование по миганию индикатора в дежурном режиме для неадресных извещателей является рекомендуемым. Требование по миганию индикатора в дежурном режиме для адресных извещателей, распространяется на извещатели, производимые после 01.01.2010 г.».

Соответственно в настоящее время выпускаются тепловые извещатели со встроенным светодиодным индикатором (рис. 1) и извещатели без индикатора, к которым подключаются выносные индикаторы. Следовательно, при определении номиналов дополнительных резисторов необходимо учитывать наличие и электрические характеристики подключаемых светодиодов.

Рис. 1. Тепловой извещатель со встроенным индикатором

Характеристики светодиодов

Светодиод, как и любой другой диод, имеет нелинейную вольт-амперную характеристику, то есть в отличие от резистора его сопротивление изменяется в широких пределах в зависимости от тока. В качестве примера на рис. 2 приведена вольт-амперная характеристика индикаторного светодиода от пожарного извещателя. При изменении тока светодиода в пределах от 1 до 20 мА напряжение на нем примерно равно 2 В, а точнее при 1 мА напряжение равно 1,84 В, а при 20 мА — 2,23 В. Соответственно сопротивление светодиода при токе 1 мА равно 1,84 кОм, а при увеличении тока до 20 мА его сопротивление падает до 111,5 Ом! Поэтому в спецификации на светодиоды, как правило, указывается типовое и максимальное падение напряжения на светодиоде. Эти величины показывают возможный разброс параметров светодиодов: например, может быть указано типовое падение напряжения на светодиоде, равное 2,2 В при 20 мА, а максимальное — 2,6 В.

Рис. 2. Вольт-амперная характеристика индикаторного светодиода

Яркость светодиодов также обычно указывается при токе 20 мА и в зависимости от типа светодиода может быть по минимуму 5—10 mcd и достигать порядка 2000—3000 mcd, что существенно влияет на их цену. В пожарном шлейфе ток индикаторов порядка 20 мА обеспечить не представляется возможным, поскольку даже ток короткого замыкания шлейфа у многих приборов не достигает этой величины. Конечно, для обеспечения функции индикации светодиод при включении должен иметь достаточную яркость и широкую диаграмму направленности. По экспертной оценке, стандартные светодиоды обеспечивают более-менее приемлемую яркость при токах не менее 5 мА, а сверхъяркие светодиоды — при токах от 1,5 мА. Необходимо отметить, что для упрощения монтажа в тепловых извещателях желательно использовать неполярные светодиодные индикаторы.

Схема подключения тепловых извещателей

Тепловые извещатели с нормально замкнутыми контактами подключаются к шлейфу пожарной сигнализации аналогично дымовым извещателям, и различие заключается в основном в значительно меньшей величине падения напряжения в активном режиме и в отсутствии тока потребления в дежурном режиме. Соответственно присутствуют примерно те же проблемы при согласовании шлейфа в двухпороговом режиме, степень значимости которых в основном зависит от типа используемого прибора. В этой статье ограничимся рассмотрением проблем, возникающих при использовании тепловых извещателей с нормально замкнутыми контрактами, которые соответственно подключаются в шлейф последовательно.

Рис. 3. Схема подключения тепловых извещателей без индикатора

Принцип действия так называемого теплового шлейфа заключается в повышении сопротивления шлейфа на величину балластного сопротивления, подключенного параллельно извещателю при его активизации (рис. 3). Без учета сопротивления кабеля, сопротивления контактов извещателей и тока утечки сопротивление шлейфа в дежурном режиме равно Rок, при активизации одного извещателя: RШС = RБАЛ + RОК, при активизации двух извещателей: RШС = 2RБАЛ + RОК, трех извещателей: RШС = 3RБАЛ + RОК и так далее. И если рассматривать «тепловой» шлейф с извещателями без индикаторов, то существенных проблем возникать не должно. В документации на любой прибор указаны величины оконечных и балластных резисторов. Кроме того, обычно приводятся диапазоны сопротивления шлейфа в различных режимах. Например, если величина балластных резисторов по 4,7 кОм, а оконечного резистора — 7,5 кОм, то при сработке первого извещателя сопротивление шлейфа повышается до 12,2 кОм, а при сработке двух извещателей — до 16,9 кОм, и при сопротивлении шлейфа более 20 кОм можно было бы фиксировать обрыв шлейфа и формировать сигнал «Неисправность». Однако необходимо учитывать, что при работе прибора в двухпороговом режиме в помещении должно устанавливаться не менее трех пожарных извещателей. Следовательно, есть определенная вероятность одновременного срабатывания 2-го и 3-го извещателя, ее величина зависит от многих факторов, например, от расположения извещателей относительно очага и идентичности их характеристик, от временных характеристик прибора, то есть насколько близкие по времени сработки извещателей он идентифицирует. Но в любом случае величина этой вероятности не равна нулю. А вот в приборах с перезапросом состояния извещателей, в том числе зачем-то и тепловых, эта вероятность близка к единице в случае исправности всех трех извещателей. Таким образом, с учетом высокой скорости развития открытого очага, если после сработки первого теплового извещателя прибор производит автоматический сброс шлейфа и повторный опрос состояния шлейфа производится примерно через полминуты, то к этому времени все три извещателя успеют активизироваться. В этом случае сопротивление шлейфа будет равно 21,6 кОм, а при активизации четырех извещателей — уже 26,3 кОм. Следовательно, для исключения формирования сигнала «Неисправность» при пожаре порог данного сигнала должен быть выбран около 30 кОм и режим перезапроса должен быть исключен.

Попутно отметим, что порог обрыва шлейфа на уровне 30 кОм исключает возможность работы с дымовыми извещателями. При напряжении шлейфа на холостом ходу порядка 20 В порогу сигнала «Неисправность» соответствует ток шлейфа, равный 0,67 мА, а за вычетом тока утечки 0,4 мА от сопротивления 50 кОм, что необходимо обеспечить в обязательном порядке по требованиям ГОСТ Р 53325—2009, на питание извещателей в дежурном режиме остается менее 0,27 мА. Что ограничивает возможности защиты таким шлейфом до одного помещения с тремя дымовыми извещателями. При попытке защиты даже двух помещений, то есть при включении в шлейф шести дымовых извещателей с током по 0,1 мА, их суммарный ток в дежурном режиме будет равен 0,6 мА, а при обрыве шлейфа между двумя помещениями, либо при снятии извещателей во втором помещении обрыв шлейфа не будет зафиксирован, так как ток оставшихся трех извещателей, равный 0,3 мА, превышает порог формирования сигнала «Неисправность».

Кроме того, формирование так называемого «комбинированного» шлейфа с одновременным включением дымовых и тепловых извещателей даже с нормально разомкнутыми контактами нельзя допускать, исходя из тактических соображений. Уровень защиты дымовыми и тепловыми извещателями существенно различается, соответственно должна быть другой реакция на сработку теплового извещателя при наличии открытого очага по сравнению с обнаружением тлеющих очагов дымовыми извещателями. С другой стороны, нормами определена защита большинства объектов дымовыми извещателями как обеспечивающими раннее обнаружение пожара и защищающими жизни людей. Тепловые извещатели используются в настоящее время достаточно редко и, как правило, в зонах, где не допускается использование дымовых извещателей по условиям эксплуатации. Вполне целесообразна защита этих зон отдельными шлейфами для обеспечения адресности с учетом обнаружения пожара на этапе открытого очага.

Расчет шлейфа с тепловыми извещателями с индикатором

Расчет шлейфа при использовании тепловых извещателей с индикаторами (рис. 4), по требованиям действующих уже 10 лет норм, естественно, усложняется. Кроме того, если в документации на приемно-контрольный прибор приведены схемы включения тепловых извещателей, аналогичные представленной на рис. 3, то возникают  вопросы: какая величина балластных резисторов должна быть выбрана при наличии светодиодов, можно ли уложиться в установленные пороги сигналов «Пожар 1», «Пожар 2» с учетом нелинейности характеристик светодиодов, будут ли они что-либо индицировать и т.д. Конечно, для точного расчета требуются более полные характеристики ППКП, которые в документации не указываются, исходя из чего попытаемся определить общие закономерности для различного класса приборов.

Рис. 4. Схема подключения тепловых извещателей с индикатором

Из предыдущего расчета при напряжении ненагруженного шлейфа 20 В при выходном сопротивлении шлейфа прибора 1 кОм и при сопротивлении шлейфа в режиме «Пожар 1» 4,7 к + 7,5 к, ток равен примерно 1,515 мА. Определим величину балластного сопротивления в предположении падения напряжения на светодиоде, равного 2 В (рис. 2). При токе шлейфа 1,515 мА на резисторе 4,7 кОм падает до 1,515х4,7 = 7,12 В. За вычетом 2 В, которые падают на светодиоде на балластное сопротивление, остается 5,12 В и с учетом тока шлейфа 1,515 мА его величина должна быть 3,38 кОм. Не будем производить округление этого значения до ближайшего номинала резистора, чтобы оценить, насколько расходятся параметры шлейфа при сработке второго и третьего теплового извещателя с индикатором от безиндикаторных. Проверка: сопротивление светодиода при падении напряжения на нем 2 В, и токе 1,515 мА равно 2/1,515 = 1,32 кОм, что в сумме с вычисленным балластным сопротивлением составляет требуемые 4,7 кОм.

При активизации второго извещателя ток шлейфа будет определяться как частное от деления суммарного падения напряжения на резисторах на их суммарную величину. То есть из исходного напряжения шлейфа, равного 20 В, вычитаем величину падения напряжения на двух светодиодах — примерно 4 В. Получаем 16 В — падение на резисторах, их суммарная величина 1 к + 3,38 к + 3,38 к + 7,5 к = 15,26 к, а ток соответственно равен 1,05 мА. Общее сопротивление цепи равно 20В/1,05мА = 19,05 кОм, и, вычитая выходное сопротивление прибора 1 кОм, получаем сопротивление шлейфа, равное 18,05 кОм. Получили несколько большую величину по сравнению с 16,9 кОм,  при использовании тепловых извещателей без индикаторов. Аналогично можно посчитать параметры шлейфа при активизации трех извещателей, однако следует отметить, что снижение величины тока до 1 мА делает проблематичным контроль индикации уже двух извещателей даже при использовании сверхъярких светодиодов, к тому же при токах менее 1—1,5 мА вольт-амперная характеристика «загибается» и необходимо учитывать изменение падения напряжения на светодиоде (рис. 2). Проще сказать, что приборы с однополярным шлейфом не рассчитаны на подключение тепловых извещателей с индикаторами, поэтому их подключение и не приводится в документации. Однако имеются и более существенные нюансы, чем отсутствие индикации режима «Пожар» при использовании выносного индикатора!

Выносной индикатор или резервирование неисправности?

По действующим с 2003 г. нормативным требованиям для снижения вероятности формирования ложного сигнала «Пожар» запуск большей части противопожарных систем производится при срабатывании не менее двух извещателей при наличии третьего резервного извещателя в двухпороговом шлейфе. Реализуется логика работы «два из трех», то есть сигнал «Пожар 2» формируется при активизации любых двух извещателей, а третий извещатель может быть неисправным. Этот алгоритм не обеспечивается при включении в «тепловой» шлейф извещателей с нормально замкнутыми контактами и с выносным индикатором. В случае обрыва цепи выносного индикатора или балластного резистора при срабатывании теплового извещателя происходит обрыв шлейфа (рис. 5) и прибор формирует сигнал «Неисправность», естественно при срабатывании оставшихся исправных извещателей обрыв шлейфа не устраняется и пожар не обнаруживается. Причем в дежурном режиме, при замкнутых контактах извещателя, эта неисправность не обнаруживается.

Рис. 5. Обрыв цепи выносного индикатора вызывает обрыв шлейфа при пожаре

Кроме того, даже если первым сработает исправный извещатель, а вторым — извещатель с оборванной цепью выносного индикатора, то прибор сформирует сначала сигнал «Пожар 1», а при сработке второго извещателя обнаружит обрыв шлейфа и сформирует сигнал «Неисправность» по логике работы большой части отечественных приборов. Таким образом, грубейшим образом нарушается логика работы системы, определенная в нормативах, — вместо резервирования неисправных извещателей резервируется сама неисправность. Если из двух сработавших извещателей один имеет обрыв выносного индикатора, сигнал «Пожар» блокируется.

В приборах с функцией перезапроса, когда к моменту перепроверки шлейфа сработают все три извещателя, будет работать логика резервирования неисправности по максимуму, по «ИЛИ»: если хотя бы в одном извещателе из трех есть обрыв цепи выносного индикатора, то сигнал «Пожар» блокируется из-за обрыва шлейфа.

Для обеспечения работоспособности системы в зарубежных нормах присутствует общее требование, относящееся ко всем пожарным извещателям, о том, что обрыв или короткое замыкание цепей выносных индикаторов и других дополнительных устройств не должны нарушать работоспособность извещателя.

Таким образом, при использовании тепловых извещателей с нормально замкнутыми контактами необходимо заранее прорабатывать вопросы согласования с ППКП для исключения значительных трудностей на этапе монтажа и приемосдаточных испытаний.

схема правильного подключения, установка, принцип работы

Статистика большого количества возгораний подтверждается ежедневным реагированием пожарных расчетов. Причины пожара могут быть разнообразными - от курения в неположенном месте и неосторожного обращения с огнем до замыкания электропроводки и поджогов. Автоматическая пожарная сигнализация предупреждает о возгорании и позволяет вовремя устранить источник.

Что такое пожарная сигнализация

Первичные регистрирующие устройства - датчики - предназначены для своевременного и быстрого обнаружения первых признаков возгорания и дыма. Датчик может либо самостоятельно активировать тревогу, либо приводить в действие систему оповещения, включать пожаротушение и передавать данные в аварийно-спасательную часть МЧС. Пожарная сигнализация представляет собой описанную выше совокупность технических средств первичного обнаружения и информирования.

Правильная настройка и своевременная проверка систем пожарообнаружения играют немаловажную роль. Датчики за время длительной эксплуатации могут испачкаться, выйти из строя, что сказывается на их работоспособности и, как следствие, на сохранности жизни и имущества людей. Быстрое обнаружение очага возгорания и расшифровка информации о его местоположении способны решить различные задачи:

  • Активация системы пожаротушения и информирование пожарного расчета МЧС.
  • Проведение эвакуации людей.
  • Локализация очага возгорания.
  • Понижение финансовых трат.
  • Минимизация травм и смертей среди людей.

Виды пожарной сигнализации

Комплектующие современных пожарных систем могут отличаться. Принцип работы и тип сигнализации определяют выбор необходимого оборудования - кабелей, датчиков, блоков питания и т. д. По структурной схеме пожарные сигнализации бывают:

  • Пороговыми с радиальным шлейфом.
  • Пороговыми с модульным построением.
  • Адресно-аналоговыми.
  • Адресно-опросными.
  • Комбинированными.

Адресно-аналоговые системы

Для сбора и анализа информации, получаемой с датчиков влажности, температуры, дыма и прочих, создаются адресно-аналоговые пожарные системы. Приемно-контрольный прибор считывает в реальном времени показания датчиков, каждому из которых присвоен конкретный адрес местонахождения. Полученная от разных датчиков информация анализируется, после чего посредством адресной сигнализации определяется местоположение очага воспламенения и подается сигнал и пожаре. Структура адресных шлейфов кольцевая, на каждый из них подключается до 200 датчиков и устройств:

  • Ручные и автоматические извещатели.
  • Реле.
  • Модули контроля.
  • Оповещатели.

Достоинства адресно-аналоговой пожарной сигнализации:

  • Почти полное отсутствие ложных тревог.
  • Быстрое обнаружение очага возгорания.
  • Возможность настройки чувствительности сенсоров.
  • Минимальные расходы на подключение схемы пожарной сигнализации и ее последующее техническое обслуживание.

Адресно-опросные

В адресных и пороговых системах сигнал о пожаре формируется самим датчиком. Протокол обмена информацией реализуется в шлейфе с целью определения сработавшего датчика. В отличие от адресно-аналоговой системы, алгоритм работы адресно-опросной проще. От сенсоров поступают сигналы на контрольную панель управления, затем осуществляется циклическое опрашивание извещателей для выяснения их состояния. Недостатком таких систем является увеличение времени обнаружения источника возгорания.

Преимущества сигнализаций:

  • Оптимальное соотношение цены и качества.
  • Информативность получаемых сигналов.
  • Контроль настроек и функциональности извещателей.

Пороговая

Система пожарной сигнализации со схемой, в которой у каждого датчика-извещателя имеется определенный порог чувствительности. Сигнал тревоги в ней срабатывает по номеру одного из сенсоров. Такие пожарные системы устанавливаются на небольших объектах - в детских садах и магазинах. Их минусом является минимальная информативность - срабатывает только сенсор - и отсутствие указания местонахождения очага возгорания. К преимуществам относят невысокую стоимость самой сигнализации и процесса ее установки.

Конструкция пожарных систем

Схема охранно-пожарной сигнализации представлена датчиками, сигнализирующими о появлении дыма, системой сбора, контроля и передачи данных. Каждый из элементов пожарной системы отвечает за конкретные задачи:

  • Охранно-пожарная панель - активирует систему.
  • Датчики - фиксируют задымление и подают соответствующий сигнал.
  • Приемно-контрольные панели - собирают и обрабатывают поступающую информацию, передают сигналы соответствующим службам.
  • Периферийное оборудование - обеспечивает линии связи, электропитание, активацию системы пожаротушения, методы информирования.
  • Оборудование центрального управления ОПС - охранно-пожарной сигнализации - получает сигнализацию от разных объектов и собирает информацию для отделений МЧС.

Принцип работы

Система пожарной сигнализации функционирует на основе поочередного опроса всех датчиков и выявления факта срабатывания одного из них в случае с пороговыми системами либо изменения параметров среды в случае с адресно-аналоговыми системами. Пороговые системы при срабатывании датчика обрывают весь шлейф, что сигнализирует о наличии очага возгорания в зоне расположения данного шлейфа. Активация орошения в зоне задымления происходит в автоматических системах пожаротушения после получения соответствующего сигнала, который также подает сигнал тревоги и посылает вызов на центральный пульт.

Датчики пожарной системы

Основная функция датчиков пожарной сигнализации - быстрое реагирование на изменение параметров среды. Датчики отличаются друг от друга по принципу работы, типу контролируемого параметра, способу передачи информации. Принцип функционирования может быть двух типов - пассивного и активного: первый подразумевает только срабатывание, второй - срабатывание и мониторинг параметров окружающей среды. В зависимости от уровня угрозы активные извещатели подают различные сигналы на пост автоматического управления.

Аспирационные извещатели осуществляют забор проб воздуха, его доставку и анализ. Сенсоры отличаются друг от друга контролируемыми физическими параметрами, по которым делятся на несколько категорий:

  • Тепловые.
  • Дымовые.
  • Пламени.
  • Утечки природного/угарного газа.
  • Утечки воды.

Принцип работы дымового датчика

Извещатель задымления, входящий в схему пожарной сигнализации, предназначен для определения источника воспламенения посредством обнаружения задымления в той части здания, где он находится. Датчики такого типа оптические - генерирование электрического сигнала происходит посредством фиксации света от светодиода фотоэлементом воздушной камеры. При ее задымлении на фотоэлемент поступает меньшее количество света, что приводит к срабатыванию датчика. Рабочий диапазон температур датчиков - от -30 до +40 градусов.

Нормативы установки

Монтаж схемы пожарной сигнализации осуществляется согласно официальной документации - нормативам пожарной безопасности НПБ 88-2001, в которых указаны правила проектирования, монтажа и эксплуатации подобных систем. Процесс создания разнообразных комплексов пожаротушения регламентирован данными правилами. Например, площадь и высота потолков помещения определяют количество точечных дымовых датчиков и их расположение относительно друг друга.

Схема подключения датчиков пожарной сигнализации

Датчики объединяются в единую систему посредством проводов. Некоторые типы извещателей могут транслировать сигналы блоку управления без подключения проводки.

Подключение схемы пожарной сигнализации выполняется после определения необходимого количества датчиков. Непосредственно перед монтажом размечаются местоположения блока управления, ручных пожарных извещателей и системы оповещения. Для этого подойдут места с открытым доступом: в случае возгорания ничего не должно мешать добраться до извещателей и прочих элементов системы.

Большинство схем пожарной сигнализации подразумевают крепление детекторов к потолку. Их маскировка отделочными материалами возможна при условии сохранения эффективности их работы.

Датчики подключаются к блоку управления.

Установка пожарной сигнализации

Первый этап монтажа включает выбор схемы пожарной сигнализации, основного и дополнительного оборудования и охранной системы. Совмещение пожарной и охранной систем создает охранно-пожарный комплекс. Монтаж и подключение пожарной сигнализации на выбранном заказчиком объекте осуществляются в несколько этапов:

  • Проектирование схемы пожарной сигнализации.
  • Прокладка кабелей и шлейфов.
  • Установка датчиков.
  • Проведение пуско-наладочных работ.

Рекомендации по установке

Перед размещением датчиков пожарной сигнализации оценивается площадь помещения, в котором будет проводиться монтаж. Для этого определяется радиус действия детекторов. Делать это лучше всего совместно со специалистами.

Работе установленных извещателей не должны мешать сторонние раздражители: к примеру, запахи из кухни могут спровоцировать реакцию датчиков задымления. Тепловые датчики должны размещаться на расстоянии от источников искусственного тепла.

Мультисенсорные датчики повышают эффективность работы пожарной сигнализации, особенно если она устанавливается в многоэтажном здании. Возможен вариант, при котором предусмотрена комбинированная схема датчиков пожарной сигнализации, сообщающихся друг с другом посредством радиоуправления.

Система оповещения устанавливается таким образом, чтобы сигнал тревоги был слышен всем людям, находящимся в помещении или здании.

Главной рекомендацией является своевременное техническое обслуживание сигнализации. Для этого системы периодически проверяют и перенастраивают. Некоторые модели оснащают защитой от насекомых, пыли, влаги и прочих раздражителей.

Комплектация противопожарных систем включает инструкцию по установке и эксплуатации. При соблюдении указанных производителем рекомендаций приборы могут прослужить длительное время.

Схема пожарной сигнализации "Болид"

На российском рынке представлен широкий ассортимент систем безопасности, но наиболее популярной и распространенной считается охранно-противопожарная сигнализация Bolid.

Охранно-пожарная система Bolid представляет совокупность технических средств, действие которых направлено на сбор данных от разных оповещателей и датчиков и их преобразование в информацию, передаваемую операторам в случае возникновения возгорания либо проникновения на охраняемую территорию сторонних лиц.

Функционал сигнализации Bolid позволяет:

  • Осуществлять постоянный надзор за объектом при помощи камер видеонаблюдения.
  • Подача сигнала тревоги в случае выхода оборудования из строя.
  • Определение места нарушения охраняемого периметра.
  • Автоматическая активация системы пожаротушения при возникновении очага возгорания.
  • Быстрое обнаружение факта увеличения температуры, задымления помещения или воспламенения.

Подключение и монтаж датчика пожарной сигнализации, схема установки

Борьба с очагами возгорания наиболее эффективна на начальном этапе. Но как распознать их до того, как пламя охватит большие площади? Ранее с этой целью в каждом населенном пункте устанавливались пожарные башни с которых круглосуточно велось наблюдение.

При появлении первого признака возгорания – дыма, дежурным нарядам подавался сигнал. Но эффективность такого способа обнаружения была очень мала. Сегодня существуют специальные системы, с успехом заменившие человека. Монтаж датчиков сигнализации возможен в каждом помещении и даже на открытых площадках.

Они фиксируют появление малейших проявлений возгорания и передают сигнал на пульт. Но для того, чтобы сигнализация работала без сбоев необходимо ее глаза (извещатели) устанавливать в соответствии с существующими нормативами.

Содержание:

  1. Типы и виды оборудования
  2. Монтаж- работы поэтапно
  3. Нюансы по установке датчиков
  4. Ценовой вопрос — услуги специалистов
  5. Совет мастера

Что включает в себя пожарная сигнализация?

Это комплекс устройств, обнаруживающих признаки пожара и информирующих людей о месте их появления.

В состав системы входят:

  • Пожарные извещатели
  • Приемная аппаратура
  • Свето-звуковые приборы
  • Линии связи
  • Источники питания

Датчики выпускаются для ручной и автоматической подачи сигнала. Они реагируют на:

  • Дым
  • Тепло
  • Газ
  • Пламя

Приемные устройства получают сигнал от извещателя, управляют звуковой и световой сигнализацией о пожаре, транслируя сигнал в пожарную охрану.

Существует три типа систем сигнализации:

  1. Пороговая (обычная) – наиболее дешевая и распространенная модель, применяется на небольших объектах
  2. Адресная – более поздняя версия, позволяет точно определять место пожара
  3. Адресно-аналоговая – последняя из разработок в данной сфере, гарантирует не только точное определение места возникновения очага возгорания, но и возможность его регистрации на самой ранней стадии

Монтаж системы – все по порядку?

Монтаж сигнализации начинается с проектирования. На этой стадии выполняются расчеты и создается макет прокладки кабельных линий, мест установки датчиков и другого оборудования. При разработке проекта пожарной сигнализации учитывается тип помещения. В зависимости от него выбирается тип пожарной системы.

Внимание!

Только правильно выполненный монтаж датчиков обеспечит надежную и безаварийную эксплуатацию системы. При его проведении должны быть учтены все требования ГОСТов. Такая работа предполагает наличие определенных навыков, доверьте ее профессионалам!

Современные пожарные системы – технически сложные устройства, с необходимостью программирования некоторых функций. Желание сэкономить на их установке может привести к сбою в работе. Своими силами выполнить монтаж очень сложно.

Что включает в себя монтаж, смотрим видео:

Для этого необходимы знания по электрике и программированию, как минимум. Если вы все же решитесь на такой шаг, то помните, что по закону это не запрещено. Вот только на пульт вашу систему не возьмут, придется довольствоваться выводом тревоги на сотовый телефон.

Правила установки  датчиков

Извещатели и провода, их соединяющие, являются ключевым узлом системы, гарантирующим ее надежность и правильность работы. Поэтому выбирать их необходимо с особой тщательностью.

В продаже есть специальные сигнальные кабели двух и многожильные. Они могут быть спрятаны под декоративной обшивкой, чтобы не портить внешний вид помещения.Извещатели, их выбор – вопрос особый. Для частного жилья лучший вариант – герконовые.

На них распространяются правила установки датчиков сигнализации, регламентируемые ГОСТом. В кухне по возможности устанавливают комбинированные модели, реагирующие на тепло и задымление.

Смотрим видео, о правиле установки дымового датчика:

При монтаже следует придерживаться существующих норм размещения:

  • Между датчиками – до 9 м
  • От стен и углов – 4,5 м

Но эти значения рассчитаны на удобство конфигурирования определенной системы, на самом деле расположить их так не всегда доступно. Так монтаж сигнализации на стене возможен если расстояние до потолка составляет около 0,2 м, это поможет избежать ложных срабатываний. Чувствительность прибора зависит от расстояния до возможного источника пожара. При этом контролируемая площадь в пустом помещении с высотой потолка 3,5 м составит для извещателей по:

  • Дыму – 85 м²
  • Пламени – 25 м²

Чтобы произвести точный расчет расположения устройств в комнатах с обстановкой потребуется компьютерное моделирование или профессиональные навыки. Если вы решите заняться этим самостоятельно, то считайте, что один датчик контролирует квадрат со сторонами равными высоте потолка (не более 4 м).

Значит между двумя соседними приборами должно быть расстояние, соответствующее принятому значению. В таком случае крайние извещатели устанавливают на половине длины стороны квадрата от стены.

Следующий этап монтажа системы пожаро — охранной сигнализации – включение датчиков в шлейф. Он выполняется строго по инструкции, прилагаемой к каждому прибору. В ней указана схема подключения датчиков пожарной сигнализации в систему. Шлейф луча должен заканчиваться терминирующим резистором.

Стоимость установки оборудования профессионалами

От чего зависит цена на монтаж сигнализации? Этот вопрос интересует многих. Рассмотрим факторы, влияющие на стоимость установки. Во-первых, цена зависит от площади и особенностей помещения.

Естественно, что количество приборов соответствует размерам комнаты, следовательно, возрастает и стоимость установки датчика.

Однако при наличии в помещении перегородок, воздуховодов число приборов может быть увеличено как минимум вдвое.

Назначение объекта также влияет на стоимость монтажа. В зависимости от данного фактора выбирается тип системы. Цены на установку зависят от ее сложности.

Во-вторых, существует различие в стоимости между проводной и беспроводной сигнализацией. Последняя обойдется на 30% дороже. Более подробно в статье Какую выбрать беспроводную пожарную сигнализацию.

В-третьих, способ прокладки. При выборе проводной системы для квартиры важный фактор – эстетика помещения. Чаще всего выбирают скрытый способ прокладки, а это еще 10% к общей стоимости.

В-четвертых, адресная система пожарной сигнализации и аналоговая также отличаются по цене. Хотя, как способ удешевления первого вида сигнализации возможно использовать комбинированную модель.

В-пятых, интеграция с другими охранными системами добавит еще 10%.

Как видите факторов, от которых зависит цена более чем достаточно. Возможно монтаж выполненный самостоятельно позволит сэкономить определенную сумму, но он должен быть выполнен с учетом всех нормативных требований.

Делаем монтаж самостоятельно, советы от специалистов

Не все могут позволить себе установку пожарной сигнализации с выводом на пульт. Большинство предпочитает производить монтаж самостоятельно. В данном случае следует определиться какие помещения будут оснащаться датчиками. Например, газовые извещатели устанавливаются на кухне или в котельной, дымовые в жилых комнатах.

Далее выберите, где будут установлены датчики и другое оборудование и как будут прокладываться провода. И можете приступать непосредственно к монтажу. Подключение датчика сигнализации должно производиться при выключенном питании, не торопясь, аккуратно. Выполнив монтаж необходимо проверить работу всех извещателей и системы в целом.

Внимательно изучив всю информацию по установке системы пожарной сигнализации можно выполнить ее самостоятельно. Это позволит сэкономить средства, но…

Стоит ли? Ведь малейшая ошибка в монтаже может привести к плачевным последствиям.

Подключение охранно пожарной сигнализации. Схема подключения пожарной сигнализации и принцип ее работы. Как отключить систему пожарной сигнализации

Пожарная сигнализация является сложной системой, которая помогает обнаружить источник возникновения огня. Кроме того, в ней предусматривается система речевого оповещения, дымоудаления и другие важные функции. Общие моменты работы такого оборудования представляют многие, однако не все из них понимают, каким образом происходит оповещение о нарушениях. Из-за этого могут возникнуть сомнения по поводу того, а стоит ли вообще устанавливать эту систему, так как может показаться, что оно не очень надежно. Для этого мы более подробно рассмотрим принцип, по которому работает пожарная сигнализация.

Принцип работы оповещения

Вначале напомним, из чего состоит пожарная сигнализация:

  • сенсорные устройства, то есть извещатели и датчики;
  • оборудование, отвечающее за сбор и обработку информации с сенсорных устройств, датчиков;
  • оборудование централизованного управления, например, центральный компьютер.

Периферийные устройства (обладают самостоятельным конструктивным исполнением и подключаются к контрольной панели):

  • принтер сообщений: печать служебных и тревожных сообщений системы;
  • пульт управления;
  • световой оповещатель;
  • звуковой оповещатель;
  • модуль, изолирующий короткое замыкание: используется для того, чтобы обеспечить работоспособность кольцевых шлейфов в том случае, если произошло короткое замыкание.

В общем принципе работы нет ничего сложного: через специальные датчики информация поддается программе обработки, а затем выводится в мониторинговый центр, отвечающий за безопасность. Здесь отдельное внимание стоит уделить самим датчикам, которые делятся на два вида.

  1. Активные датчики. В них генерируется постоянный сигнал, принадлежащий охраняемой зоне. Если он изменяется, они начинают реагировать.
  2. Пассивные датчики. Их действие основано на прямом изменении окружающей обстановки, что вызывается возгоранием.

Кроме того, датчики могут отличаться по механизму действия:

  • работа за счет инфракрасного механизма;
  • за счет магнитокрасного механизма;
  • за счет комбинированного механизма;
  • реагирование на разбитие стекла;
  • применение периметральных активных переключателей.

Алгоритм действий

После того, как датчики обнаружили источник возгорания, пожарная сигнализация начинает выполнять алгоритм действий. Если принципиальная схема сделана верно, то весь алгоритм сработает правильно.

  1. Для того чтобы люди узнали о начале пожара, должна включиться система оповещения. Она может быть светозвуковой или обычной, то есть звуковой. Состав и тип оповещения определяется на этапе проектирования. Это зависит от площади здания, его высоты и так далее. Система оповещения обязательно включает в себя световые таблички с надписью «выход», которые помогают найти выход в задымленном пространстве.

  2. Освобождение всех путей эвакуации людей. Это возможно при наличии системы контроля и управления доступом (СКУД). Пожарная сигнализация подает в нее сигнал и она, то есть СКУД, дает возможность находящимся в здании людям покинуть опасное место без препятствий.

  3. Включение системы автоматического пожаротушения. Здесь возможны три варианта: водяное пожаротушение, водопенное, порошковое или газовое пожаротушение . Тип определяется по НБП, а также имуществом, которое находится на объекте. Для примера можно взять библиотеку. Представим, что тушение пожара в ней будет осуществляться пеной или водой. В таком случае убытки от этого будут такими же, как от самого пожара.

  4. Включение системы дымоудаления. Это важно для того, чтобы люди не отравились вредными веществами, содержащимися в дыме от пожара. Также из системы приточной вентиляции должна прекратиться подача воздуха с улицы, так как он способствует раздуванию пламени. Все эти команды также подает автоматическая пожарная сигнализация.

  5. Если в здании есть лифты, он должны опуститься до уровня первого этажа и заблокироваться, но перед этим должны открыться двери.

  6. Отключение потребителей тока. Системы жизнеобеспечения переходят в аварийный режим. Сама система безопасности снабжается от ББП, то есть блоков бесперебойного питания.

Схема подключения сигнализации

Чтобы все эти моменты были выполнены качественно, важно правильно составить принципиальную схему подключения сигнализации . С помощью нее эксплуатация системы будет эффективной и безопасной.

Напомним, что принципиальная схема отличается двумя важными моментами:

  • показывает, как воспроизвести схему;
  • дает информацию о составе схемы и принципах функционирования, что также полезно при доработке или ремонте оборудования.

Обычно схеме подключения дается вместе с комплектом сигнализации. Нужно следить за соблюдением всех аспектов установки оборудования. Правильная схема и точное следование ей поможет быстро отреагировать на очаг возгорания и предпринять все необходимые действия, которые направлены на спасение людей.

Как видно, принцип, по которому осуществляется работа пожарной сигнализации, достаточно прост. Главное, чтобы все заложенные в ней действия были выполнены вовремя, так как речь идет о жизни. Это также является главной причиной, по которой нужно своевременно и внимательно устанавливать пожарную сигнализацию, которая служит на благо всем людям.

1 . Общие положения

Под энергоснабжением системы охранно-пожарной сигнализацией (ОПС) понимают электропитание источников питания постоянного тока ОПС от сети переменного тока напряжением 220 В и частотой 50 Гц.
Данный стандарт подключения составлен на основании правил устройства электроустановок (ПУЭ) и указывает выбор точки подключения к электроснабжению, правила проектирования цепи энергоснабжения до места подключения источника электропитания (ИЭП) системы ОПС, технику безопасности при проведении обследования объекта на предмет энергоснабжения и монтажно-технических работ, систему обозначения схем энергоснабжения и цветомаркировку соединительных проводов.

2 . Введение

Любая электронная система безопасности объекта должна осуществлять электропитание от сети переменного тока напряжением 220 В частотой 50Гц. Цепи электропитания системы ОПС от сети переменного тока должны быть независимы от других цепей электроснабжения объекта. Данные требования объясняются тем, что в случае перегрузки по цепи электроснабжения, в которую подключена система ОПС, срабатывает автоматический разъединитель и это может привести к отключению электропитания системы ОПС.

Для стабильной работы цепи электроснабжения системы ОПС необходимо правильно рассчитать мощность потребляемую системой и правильно в проектной документации заложить предельно-допустимый ток срабатывания автоматического разъединителя и сечение соединительных проводов.

3 . Допуск на обследование объекта и обследование объекта, проектирование и подключение ИЭП ОПС к энергоснабжению

Для обследования объекта по цепям электроснабжения с целью подключения источников электропитания комплексной системы ОПС заказчик должен предоставить действующую документацию электроснабжения объекта. В случае отсутствия документации, подключение производится от вводного главного щита или его дублирующего щита через свободный автоматический разъединитель. Если он отсутствует, то устанавливается дополнительный автоматический разъединитель и от него через разрыв цепи фазного провода прокладывается магистраль электроснабжения по объекту. Это должно быть отображено и спроектировано в рабочем проекте и согласовано с заказчиком.

Обследование объекта должен производить инженер электрик со степенью допуска по электробезопасности не ниже четвертой, совместно с энергослужбой представителя заказчика. Точки подключения источников электропитания комплексной системы ОПС оговариваются с представителем энергоцеха заказчика и утверждаются заказчиком после предоставления проектной документации (указывается в проекте какой номер распределительного шита и на какой автоматический разъединитель производится подключение. Например: для подключения комплексной системы ОПС предоставляют автоматический разъединитель № 8 распределительного щита №2 см.(Рис. 1).

Если распределительный щит загружен и нет возможности добавить автоматический разъединитель для подключения системы ОПС то по согласованию с представителем энергоцеха заказчика предлагается разместить рядом распределительный щит или бокс, в котором устанавливается отдельный независимый автоматический разъединитель.

Автоматический разъединитель рассчитывается при проектировании на предельно допустимый ток потребления источника электропитания ОПС от электрической сети с целью защиты его от перегрузки по току потребления. Схема подключения бокса или распределительного щита приведена на Рис 2.Подключение фазного провода в уже имеющемся распределительном щите производится до автоматического разъединителя. Рабочий нейтральный провод « N » подключается от прежнего распределительного щита без разрыва в колодку « N » нового распределительного щита. Корпуса распределительных щитов соединяются между собой перемычкой с помощью резьбового соединения и от этой точки соединения отводится проводник, являющийся нулевым защитным проводником – « РЕ ».

Если в прежнем распределительном щите уже имеется колодка с нулевым защитным контактом, то проводник « РЕ » отводится от этой колодки. Во вновь созданном распределительном щите или боксе устанавливается автоматический разъединитель (см. Рис 2).

Если объект имеет несколько этажей, то в точке подключения источников электропитания комплексной системы ОПС можно устанавливать дополнительные боксы соединенные между собой и точкой подключения к сети энергоснабжения шлейфом.

4 . Система обозначения и маркировка проводов по цвету

При проектировании цепей энергоснабжения применяются следующие обозначения (согласно правил устройства электроустановок):

О——————————— — первая фаза (L1)

О——————————— — вторая фаза (L2)

О——————————— — третья фаза (L3)

О——————-/———— — нейтральный провод (нулевой рабочий проводник N)

О———————/———— — заземляющий провод (нулевой защитный проводник РЕ)

О———————/———- — совмещенный нулевой рабочий и защитный проводник (РЕN)

————— —————- — контакт автоматического разъединителя.

Cогласно ПУЭ (пункт 1.1.29) буквенно-цифровое и цветовое обозначение одноименных шин (проводов) в каждой электроустановке должны быть одинаковыми:

— при переменном трехфазном токе шины фазы (проводов) L1 окрашены желтым цветом, фазы L2 – зеленым, фазы L3 – красным, нулевая рабочая шина (провод) N – голубым, шина (провод), используемая в качестве нулевой защитной РЕ продольными полосами желтого и зеленого цветов;
— при переменном однофазном токе: шины (провода) L1, L2,L3, соответствующим цветом, в зависимости от того, какая фаза использована, нулевая рабочая шина (провод) N –голубым цветом, шина (провод) нулевая заземляющая РЕ – желто-зеленым цветом …

Если приведенные выше цвета в электрическом кабале отсутствуют, то выбираются подобные цвета или другие цвета проводов, но в данной электрической системе цветовая маркировка проводов должна быть по возможности единой, провода N и РЕ должны быть по возможности голубой цвет – N, желтозеленый –РЕ.

5 . Размещение точки подключения ИЭП ОПС к энергоснабжению

Энергоснабжение ОПС осуществляется от однофазной сети переменного тока напряжением 220В частотой 50Гц и подключается к энергосистеме объекта. Токи потребления комплексной системы ОПС от сети переменного тока меньше, чем потребление от ИЭП по цепи постоянного тока.

В целях уменьшения потерь на активное сопротивление проводов и кабелей источники электропитания постоянного тока (ИЭП) системы ОПС должны находится как можно ближе к приемно–контрольным приборам. Поэтому, при размещении приемно–контрольных приборов и устройств электропитания необходимо учитывать расположение распределительного щита или бокса, к которому проектируется подключение ИЭП к сети переменного тока.

6 .Защитное заземление

Системы электроснабжения классифицируются Международной электротехнической комиссией (МЭК) в зависимости от способа заземления распределительных сетей и примененных мер защиты от поражения электрическим током. Распределительные сети подразделяются на сети с изолированной нейтралью и заземленной нейтралью. Стандарт МЭК – 364 подразделяет распределительные сети в зависимости от конфигурации токоведущих проводников, включая нулевой рабочий (нейтральный) проводник и типов систем заземления

Все установки переменного и постоянного тока напряжением до 1000 В должны удовлетворять требованиям основного правила устройства электроустановок. Одним из требований ПУЭ является защитное заземление. Кроме того заземление металлических корпусов электронных устройств системы ОПС защищает само устройство от электромагнитных помех и излучений.

Для качественного заземления электронных блоков необходимо иметь контур заземления, удовлетворяющий требованиям ПУЭ. Следовательно, при обследовании объекта необходимо обратить особое внимание на имеющийся контур заземления. Необходимо потребовать от заказчика полную документацию на контур заземления с очередной аттестацией Госэнергонадзора. Если срок поверки истёк, необходимо потребовать от заказчика провести поверку контура заземления и предоставить акт поверки. В акте обследования необходимо отметить состояние контура заземления, подтвержденное заказчиком.

Если контур заземления отсутствует или не удовлетворяет требованиям ПУЭ, его необходимо спроектировать, внести в проектную документацию и в смету. В процессе монтажа на объекте прокладывается контур заземления, затем его аттестовывают. Параметры проекта контура заземления и изготовленный контур должны соответствовать требованиям ПУЭ.

Для заземления электроустановок в первую очередь должны быть использованы естественные заземляющие устройства. Искусственные заземлители должны применяться лишь при необходимости снижения плотности токов, протекающих по естественным защитным проводникам (РЕ – и РЕN – проводникам) или стекающих с естественных заземлителей.

6 . Отображение в проектной документации

Все вышеуказанные параметры по энергоснабжению питающей сети ИЭП системы ОПС должны быть отображены в отдельном разделе проектной документации с указанием всех деталей подключения электропитания от сети переменного напряжением 220В. В проекте необходимо обязательно отобразить электрическую схему с указанием распределительного щита, от которого произведено подключение дополнительного распределительного щита (бокса). В спецификации указать какой автоматический разъединитель, тип и сечение кабелей и проводов, заложенных при проектировании.

7 . Техника безопасности

Обследование объекта на предмет электроснабжения должно производится двумя лицами, причем один из них должен иметь группу по электробезопасности не ниже четвертой, другой не ниже третьей.
Инженер – электрик представитель производителя работ должен осматривать объект с представителем энергоцеха заказчика во избежание аварийных ситуаций.
Электрический распределительный щит, который подвергается обследованию, может находится под напряжением либо линейным (трёхфазная сеть 380В), либо фазным напряжением (однофазная сеть 220В). Опасные токоведущие части распределительного щита не должны быть доступны для преднамеренного прямого прикосновения к ним, а доступные к прикосновению открытые проводящие части, защитные проводники (РЕ), а также открытые токоведущие части цепей обратного тока, включая РЕN – проводники, не должны быть опасны при прямом прикосновении к ним.

При обследовании распределительного щита необходимо убедиться, что корпус распределительного щита имеет хорошее заземление.

Производить какие–либо действия в распределительном щите необходимо одной рукой, причем манжет одежды должен быть застёгнут плотно на кисте руки. Не должно быть болтающихся частей одежды, которыми можно было бы зацепиться за токоведущие шины. Замеры, подтверждающие наличие фазного напряжения в распределительном щите необходимо производить исправным измерительным инструментом в соответствии с ПУЭ. Щупы приборов должны быть изолированными и аттестованными на пробивное напряжение.

Литература :

1. Правила устройства электроустановок (шестое переработанное и дополненное с изменениями).
2. Р.Н. Карякин « Устройство безопасных электроустановок

Разработал: Мулкиджанян П.П.
Методист ООО «Комби-Сервис»

На данный момент стали достаточно распространены охранно-пожарные сигнализации, которые увеличивают уровень защиты всевозможных объектов. Благодаря её «многоликой» функциональности и компонентному составу, своевременно выявляется не только возгорание, но и ведётся тщательный контроль над охраняемой территорией. Такое приспособление довольно сложное и дорогое в установке и обслуге, но вы не найдёте электронный прибор, который настолько надёжен.

По какому принципу работает система пожарной сигнализации

Противопожарная система - это целый «набор» разных технических устройств, которые обеспечивают пожарную безопасность различных видов строений, техники, людей, а также материальных ценностей. Включает она в себя две системы: оповещения находящихся в здании людей и пожарную сигнализацию.

Благодаря тому, что был установлен программно-аппаратный диспетчер, вы всегда увидите очаг возгорания на плане объекта. Если был установлен на сигнализации полуавтоматический режим, то после того, как от неё поступит тревожный сигнал, служба охраны должна включить систему оповещения персонала о возгорании и при этом активировать визуальные, голосовые, а также речевые сообщения.

Когда подтвердится пожарная тревога в здании, основной сигнал передаст в СКУД - систему «сообщение» и тем самым приведёт все элементы сигнализации в режим срочной эвакуации персонала. Также сигнал поступит в систему управления разными инженерными сетями строения, после чего они перейдут в режим работы пожарной опасности.

Пожарное устройство, работающее в автоматическом режиме, выполняет такие функции:

  • Выявление зоны возгорания;
  • Обнаружение очага после 2-х разового подтверждения от момента регистрации;
  • Контроль неполадок сети на короткое замыкание, а также обрыв с привязкой до плана здания;
  • Обнаружение очага на изначальной стадии;
  • Управление разными блоками с выведением полученных результатов на АРМ диспетчер;
  • Просмотр противопожарного состояния площадей строения на детальном, а также общем плане, которые отображаются на пульте диспетчера в текстовом и графическом формате.

Особенности проектирования и расчёта

Проектирование ОПС - это основной этап, от которого зависит эффективная работа всей системы. Такую работу должны делать профессионалы, поскольку это сложная схема с рядом расчётов, значительным количеством устройств и их месторасположением. Однако поскольку они все соединяются между собой шлейфом, поэтому необходимо проектировать траекторию дальнейшей прокладки. Кроме того, надо учитывать возможные нюансы, которые разрабатываются в проекте по ликвидации возникающих угроз.

Однако разработка проекта ОПС - это субъективный процесс, так как каждый объект должен тщательно изучаться с учётом особенностей использования, а также планов. Причём надо проводить оценку:

  • Сложности конструкции;
  • Размера комнат;
  • Специфику планировки.

Внимание также надо уделять местам с самым вероятным возникновением очага. Проектирование ОПС проводится с учётом ПУЭ, а также ДСТУ. В состав проекта входит огромное количество разных работ:

  • Техническое задание, в котором учитываются все желания клиента;
  • Изучение помещений;
  • Создание типового проекта со всеми расчётными сметами на производимые работы;
  • После согласования всех нюансов с клиентом, подписываются все документы и смета;
  • Установка и проверка на работоспособность ОПС.

В процессе подготовки к монтажу сигнализации необходимо провести множество расчётов, благодаря которым можно подобрать самый идеальный вид устройства и при этом избежать дополнительных трат, например, с обслуживанием извещателей или установкой самой системы.

Наиболее важный этап расчётов - это определить идеальную ёмкость для самого источника энергии. Другими словами, надо решить какой вид источника питания больше всего подойдёт для подключения извещателей. В качестве источника могут выступать не только аккумуляторы, но и обычные батарейки.

Необходимая ёмкость источника обычно указывается в самой инструкции по эксплуатации пожарной сигнализации. Поэтому надо проверить значение на корпусе аккумулятора с имеющейся информацией в инструкции. Если ёмкости питания будет не хватать, то купите более мощное устройство. Если вы соединяете несколько аккумуляторов, то надо убедиться в их одинаковом напряжении.

Также уточните нужное сечение проводов для ОПС и обратите внимание на характеристики ёмкости аккумулятора для разных режимов работы (тревоги, ожидания). Далее необходимо суммировать данные значения, после чего вы получите общее показатели ёмкости аккумулятора именно вашей ОПС.

Виды систем

На сегодняшний день есть огромное количество разных пожарных сигнализаций всевозможного уровня сложности. Однако все они выполняют одну функцию - контролируют охраняемый объект при помощи извещателей. Большинство современных пожарных систем могут на расстоянии передавать сигнал на основной пульт охраны и даже производить многие остальные сервисные функции. Но основная их задача - это своевременное выявление возгорания на территории объекта или противозаконное проникновение. В зависимости от метода определения пожарной угрозы, системы можно разделить на такие типы:

  • Неадресная. К приёмно-конрольным устройствам подсоединяются обычные датчики (ручные, тепловые, а также дымовые), которые отображают лишь номер их шлейфа. При этом они на основную панель не передают адрес помещения, а также номер.
  • Адресная система работает по следующему принципу - на контрольную панель поступают данные с извещателей, благодаря чему определяется точный участок возникновения возгорания.
  • Адресно-аналоговая сигнализация является весьма эффективным и надёжным устройством, поскольку полученная информация попадается на главную панель, а затем она анализируется главным процессором. Подавать сигнал тревоги или нет, решает программный комплекс, а не конкретно взятый извещатель.
  • Пороговая система с радиальными шлейфами наиболее бюджетная, однако, её монтаж будет стоить дорого. При этом данный вид сигнализации может часто выдавать ложные тревоги, поэтому нужно будет дублировать извещатели, что приведёт к увеличению расходов.
  • Модульная пороговая система более совершенная, поскольку любую неисправность вы отследите по ПК, а значит, можно моментально принять необходимые меры и устранить неполадки. Недостаток - высокая цена.

Основные разновидности датчиков

Пожарные извещатели или датчики представляют собой особые приспособления, позволяющие фиксировать определённые свойства возгорания пожара с изначальным его обнаружением и дальнейшим предотвращением. Также датчики - это основной элемент всей системы сигнализации, обеспечивающие противопожарную безопасность. Безотказность извещателя определяет, в общем, эффективную работу системы, а делятся они на такие виды, как:

Тепловые извещатели

Реагируют на перепады температуры воздуха и могут делиться на:

Применять датчик тепла необходимо только в случае, если тепло является главным признаком возгорания.

Дымовые извещатели

Помогают выявлять наличие дыма в воздухе, а работают они по принципу рассеивания инфракрасного излучения на частицах дыма. Недостаток дымовых датчиков заключается в том, что они способны срабатывать даже при значительном количестве пыли, а также пара в помещении. Но между тем они очень популярны, хотя дымовые датчики не применяют в курилках или сильно запылённых комнатах.

Извещатели пламени

Срабатывают только от открытого пламени или тлеющего очага. Устанавливают их в основном в помещениях, где возможно проявление возгорания без изначального выделения дыма. Также они способны выявить возгорание на начальных стадиях, то есть, при отсутствии большинства факторов, таких как перепады температуры и задымление. Извещатели пламени применяются в производственных помещениях, характеризующихся значительным теплообменом и запылённостью.

Извещатель утечки газа

Эти датчики подходят для разного применения, поскольку они реагируют на дым, высокую температуру и даже газ в воздухе. Действуют они по принципу выявления ряда химических реакций. Данные извещатели имеют частицы окиси углерода, а настройки, работающие в автоматическом режиме, могут определить идеальную температуру окиси, при изменении которой поступает об этом сигнал.

Комбинированные датчики

Способны выявлять признаки возгорания сразу же несколькими способами. В основном это приспособления, в которых есть функции не только дымового, но и теплового датчика, благодаря чему можно конкретно выявить признаки возгорания, а затем оповестить людей.

Установка и подключение охранно-пожарной сигнализации

  1. Вы должны определить необходимое количество извещателей. А для этого вам надо знать высоту потолка помещения, а также его площадь. Согласно документации, при высоте потолка больше 3,5 метров и 80 м. кв. площади вам понадобится один извещатель, однако правила безопасности гласят, что даже в небольшом помещении должны устанавливаться минимум 2 датчика. Поэтому лучше всего руководствоваться именно этими нормами.
  2. Там, где будут устанавливаться датчики, необходимо обозначить место. Расстояние от извещателя до стены должно составлять около 450 см, при этом промежуток между датчиками должен быть приблизительно 900 см. Данное правило актуально для одноуровневых потолков с максимальной высотой в 350 см. Настенные извещатели устанавливаются на 200 мм расстоянии от потолка.
  3. На изначально размеченных местах надо зафиксировать извещатели, после чего их подключают к источнику питания 2-х жильными проводами. Устройства между собой нужно подключать последовательно. Резистор устанавливается в колодке самого последнего датчика.
  4. После того как вы подключите последний извещатель, их надо проверить на работоспособность. Для этого возле детектора необходимо провести пламенем от зажжённой спички или свечи.

Где и как установить пожарные датчики

Нормы для монтажа извещателей ОПС достаточно либеральны: между датчиками - это 9 метров, от стены - 4,5 метра. Однако такое размещение сделано исключительно ради комфортного конфигурирования определённой пожарной системы. В связи с этим можно сделать вывод, что установка и местонахождение извещателей - дело более сложное.

При установке датчиков на стенах, расстояние должно быть минимум 200 см, в противном случае они будут давать ложную тревогу, поскольку окажутся в «дымовом кармане».

Чувствительность извещателя зависит напрямую от удалённости источника опасности и всю полусферу он не обозревает. В пустой комнате площадь, которой контролирует датчик, зависит только от потолочной высоты.

По пламени:

  • До 15 м.кв. – от 6 до 9 метров;
  • До 20 м. кв. – от 3,5 до 6 метров;
  • До 25 м. кв. – 3,5 метров;
  • Более 9 метров - невозможно будет проконтролировать, поскольку возгорание станет пожаром, а сам датчик не сработает.
  • До 85 м. кв. – это до 3,5 метров;
  • До 70 м. кв. – это от 3,5 до 6 метров;
  • До 65 м. кв. – это от 6 до 10 метров;
  • До 55 м. кв. – от 10 метров.

Однако точный расчёт местонахождения извещателей нуждается в моделировании на ПК или профессионалом.

Как работает система оповещения

Когда извещатели обнаруживают возгорание, в автоматическом режиме включается система оповещения людей о пожаре. Системы оповещения по своему принципу работы, а также составу делятся на:


Функция оповещения реализуется благодаря выходным, а также входным интерфейсам. Чтобы информация отобразилась, применяются буквенно-цифровые и световые индикаторы, а также звуковые сигнализаторы.

Возможные неисправности после монтажа

Ненадлежащая профилактика - вот основные причины неполадок в пожарной сигнализации. Другими словами, надо постоянно проводить все профилактические работы. Очень часто выходят из строя дымовые датчики, поскольку в их камеру попадают разнообразные частицы и другой мусор. Однако встречается обрыв шлейфа или системные ошибки, которые также становятся причиной неисправностей.

Рассматривая пожарную систему сигнализации, выделяются основные неполадки:


Часто существенный урон пожарной сигнализации приносят загрязнённые и сильно запылённые рабочие помещения, высокая влажность или высокая температура. Также причиной выхода из строя ОПС становятся и банальные причины, например, обрыв кабелей, из-за чего сигнализация может даже без возгорания пищать, мигать и так далее. Но наиболее серьёзной причиной неполадок всё-таки становится вмешательство неквалифицированных специалистов, самодеятельность или подходящий к завершению срок эксплуатации.

Как самостоятельно убрать пожарную сигнализацию

Если же сигнализация сработала без причин, то её можно полностью отключить. Самый элементарный вариант - это достать из датчика питание (батарейку) или отсоединить от сети приёмно-контрольное устройство.

Внимание! В данном случае пожарная сигнализация станет бесполезной и не сможет вас предупредить о реальном возгорании .

Кроме того, многие пожарные сигнализации оснащаются источниками дополнительного питания и кнопкой, расположенной на датчике с лицевой стороны, которые также нужно будет отключить. При нажатии на кнопку, прибор переходит в тревожный режим, а звуковой сигнал сбрасывается в автоматическом режиме.

Также пожарную сигнализацию отключают и с помощью централизованного пульта управления, но для этого необходимо знать пароль. Если вы не можете выяснить причину поломки устройства, то тогда решайте вопрос радикально - перекусите провода, которые идут к датчику, но в этом случае прибор вообще перестанет работать и будет просто напоминать декоративный элемент.

Видео: как подключить ОПС своими руками

Безопасность человека - это первоочередная задача, при этом без разницы на рабочем месте или дома он находится. Обеспечить это можно, если установить ОПС в сочетании с другими приспособлениями. Но чтобы сигнализация работала максимально эффективно, необходимо придерживаться определённых правил по проектированию, монтажу и её эксплуатации.

Пожарная сигнализация – незаменимая в наши дни деталь инфраструктуры, позволяющая не беспокоиться за целостность помещения даже в том случае, если за его состоянием никто в конкретно взятый момент не следит. Такая система особенно хороша в тех зданиях, где вероятность возникновения и быстрого распространения пожара существенно повышена. Изначально установка такого оборудования имела смысл исключительно на различных складах, но сегодня удешевление подобной продукции приводит к тому, что оно понемногу переходит в разряд бытовых – ведь в отделке квартир все чаще используются легковоспламеняющиеся материалы.

Принцип работы системы

Пожарные извещатели – это целая группа разных приборов, которые, будучи объединены в противопожарную систему, реагируют на потенциально опасные явления. В зависимости от точной конфигурации система обнаруживает ту или иную проблему и отправляет информацию о ней на пульт пожарной охраны, которая получает возможность прибыть на место еще до того, как ее вызовут, и спасти имущество и людей. Датчики адресного типа способны не только сигнализировать о наличии проблемы в зоне наблюдения, но и точно отображать на пульте точку, в которой эта проблема обнаружена. Для самих людей система может предусматривать автоматическое звуковое оповещение – раз уж где-то загорелось, и сейчас приедут пожарные, есть смысл покинуть здание.

Система пожарного извещения для каждого помещения собирается индивидуально, учитывая его конструктивные особенности и потенциальные угрозы. При этом используются датчики разных типов, что имеют разный принцип работы.

  • Тепловые извещатели реагируют на повышение температуры. Наиболее доступными и распространенными считаются пороговые, но они не всегда эффективны – датчик реагирует на температуру выше 70 градусов, которой в норме быть не может, но если очаг возгорания далеко, срабатывание будет запоздалым. Интегральные извещатели в этом смысле надежнее, но и стоят дороже. Тепловые датчики бывают линейными – тогда они представлены в виде кабеля, а не точки. И контролируют протяженную линию.

  • Дымовые извещатели длительное время считались обязательными в общественных помещениях. Они излучают инфракрасные лучи, которые рассеиваются даже из-за незначительного количества дыма, что и улавливается прибором. Такая система надежна в плане реагирования, но предполагает слишком много возможностей ложного срабатывания – за дым прибор может принять пар или даже летающую в воздухе пыль. Естественно, в курилке такую систему ставить бессмысленно, а ведь именно там вероятность настоящего возгорания довольно высока. Соответственно, в любых помещениях, где есть такие датчики, курить строго запрещено.

  • Извещатель пламени реагирует собственно при появлении огня, а не на сопутствующие факторы. Лучшее применение для такого датчика – производственное помещение, где много пыли и постоянно высокая температура, а еще представлены легковоспламеняющиеся материалы. Вышеописанные извещатели либо отличались бы регулярными ложными срабатываниями, либо пропустили резкий момент возгорания, а за время, пока они «думают», пламя могло охватить весь цех.

  • Датчик утечки газа часто способен реагировать и на дым, и на температуру , но его главная особенность – «чувствовать» запах газа, даже когда человек его еще не обнаружил. Утечка обычно приводит к разрушительным последствиям в виде взрыва, потому при ее обнаружении нужны немедленные действия, а сигнализация вызовет аварийную службу, даже если на месте никого нет.

  • Комбинированные датчики способны реагировать сразу на несколько критериев, потому потенциально могут считаться наиболее эффективными.

Как выбрать место?

От того, насколько правильно расположены датчики, зависит эффективность работы системы, поэтому ориентироваться стоит в большей степени на конфигурацию помещения, нежели на нормы, которые довольно либеральны в этом плане. Так, датчики не должны быть друг от друга дальше 9 метров, а от стены – не более чем в 4,5 метра. В помещении обязательно должно быть не менее двух датчиков, поскольку так они страхуют друг друга и более полно охватывают территорию. Если извещатели ставятся не на потолок, а на стену, между ними должно быть хотя бы 2 метра расстояния, поскольку иначе образуется так называемый дымовой карман, из-за которого частота срабатываний резко увеличивается. По этой же причине, если потолок имеет выступающие балки в виде перегородок, улавливатели ставятся не в промежутках между ними, а на сами балки.

Любой датчик имеет определенный уровень чувствительности и не всегда обозревает всю полусферу – его необходимо устанавливать либо так, чтобы он перекрывал все защищаемое помещение, либо с особым прицелом на потенциально наиболее опасные места, например, постоянно работающую вычислительную технику. В небольших комнатах обычно допускается более далекое расположение датчика от источника, поскольку тому же дыму или повышенной температуре просто некуда деться из четырех стен.

Для примера, извещатель пламени при расстоянии до огня более 9 метров вряд ли, вообще, зафиксирует проблему. В комнате площадью до 15 кв. м он еще отреагирует на расстоянии 6-9 метров, но при двукратном увеличении помещения дистанция от огня до датчика уже должна быть не более 3-3,5 метра.

С дымом проще – тот же минимальный показатель расстояния до извещателя подходит для помещений в 70-85 кв. м, а для территорий менее 55 кв. м улавливание возможно даже при дистанции в 10 метров.В помещениях, оборудованных фальшпотолком, монтаж извещателей имеет свои особенности.

Размещение уже за подвесным потолком возможно лишь при нескольких условиях: наличие перфорации на натяжном потолке общей площадью около 40% поверхности для хорошего «обзора» запотолочных датчиков, диаметр для каждого отверстия не меньше 1 см, или составление подвесной конструкции из деталей, чьи размеры не превышают зону охвата одного датчика. Соответственно, извещатели обычно крепятся к основному потолку или другим надежным конструкциям, а в потолок врезаются. Если соблюдение этих условий не кажется возможным, запотолочные датчики выносятся на стены, поскольку непосредственно на подвесные конструкции их крепить нельзя ввиду хлипкости последних.

Поэтапные инструкции монтажа

В идеале монтаж следует доверить профессионалам – только они знают все нормы и правила, способны правильно рассчитать расстояния и подобрать наиболее эффективную схему расстановки датчиков. Опыт позволяет мастерам избегать популярных ошибок неопытных людей, когда при расчете количества потолочных извещателей не учитывается положение светильника, который мешает обзору или вызывает ложное срабатывание из-за выделения тепла. Впрочем, поверхностно разбираться в теме все же следует – хотя бы затем, чтобы проверять качество выполняемой работы.

Когда план составлен с учетом всех вышеописанных нормативов, требуется расставить обозначения на потолке или стенах в тех местах, где будут монтироваться датчики. После этого схему стоит всесторонне оценить еще раз, поскольку на потолке часто могут наблюдаться новые детали, не учтенные в чертежах. Внося изменения на ходу, не забывайте, что все расстояния должны быть в соответствии хотя бы с минимальными допустимыми значениями, иначе либо система не сработает при пожаре, либо будет грешить ложными вызовами.

В местах, выделенных для датчиков, производят их крепление. Подключение к электросети осуществляется последовательно двужильными проводами. Все детали должны быть связаны в единую сеть, потому на последний подключаемый датчик нужно установить резистор.

Когда монтаж производится за подвесными или натяжными конструкциями, для пожарной сигнализации можно сконструировать отдельный каркас – например, можно монтировать их на тросе, если он надежен и хорошо закреплен. При этом врезку следует выполнять так, чтобы края прорези не мешали полноценному обзору помещения датчиком, потому в идеале следует вывести последний к самому уровню подвесного потолка. Если потолок натяжной и выполнен из материала, который боится даже не самых высоких температур, прорезь следует взять в специальное термокольцо, ведь сам датчик, постоянно подключенный к электросети, тоже способен греться. Последний этап – проверка срабатывания системы. Для большинства типов датчиков простой и хорошей проверкой является зажженная спичка или зажигалка, которую проносят вдоль извещателей – тут вам и пламя, и дым, и температура, поэтому рабочая система просто обязана отреагировать.

Особенности подключения

Как на производстве, так и в жилых домах основной смысл пожарных извещателей – не только обнаружить потенциальную опасность, но и передать сообщение о ней пожарным. Это позволяет срочно реагировать на возгорания и задымление, пока они не приобрели катастрофических масштабов, а ведь в помещении может и не быть никого, кто поднял бы тревогу. Соответственно, извещатель нужно подключить не только к электросети, но и к приемной станции, расположенной непосредственно на посту пожарной части.

Не все системы противопожарной сигнализации отправляют сообщение о возникшей ситуации автоматически – некоторые могут только запускать сирену, предупреждающую о проблеме всех присутствующих. Так, в местах, где люди есть всегда, чаще используют недорогие ручные извещатели – это как бы кнопка пожарной тревоги, на нее кто-то должен нажать. Автоматические извещатели реагируют на показания датчиков, потому сигнал отправляется без участия человека. В любом случае для передачи сигнала нужен канал связи и конечный абонент, потому без непосредственного участия пожарной службы монтаж противопожарной сигнализации смысла не имеет.Станции, к которым подключаются извещатели, бывают разными – они рассчитаны на различные типы самих датчиков и обычно имеют ограничение по их максимальному количеству. По этой причине еще в процессе составления плана системы нужно выбрать подходящую станцию и договориться с пожарными о ее установке и обслуживании.

Соединение извещателей между собой возможно как по кольцевой, или шлейфной, системе, то есть последовательно, так и радиальным методом, где для каждой точки выделен отдельный кабель.

Возможные проблемы после установки

Противопожарная сигнализация всегда должна быть в идеальном рабочем состоянии, поскольку от нее зависит безопасность не только имущества, но и человеческих жизней. При этом пожарные извещатели, как и любая другая техника, могут периодически ломаться, в том числе – и из-за недостаточного ухода. Специалисты отмечают, что отсутствие своевременной профилактики является одной из наиболее распространенных причин выхода системы из строя. Например, в камеру дымового датчика может попасть пыль и посторонний мелкий мусор, скорее всего, это произойдет рано или поздно, а тогда извещатель уже не сможет своевременно реагировать на задымление.

Соответственно, косвенной причиной неправильной работы датчиков может стать и элементарная неопрятность обслуживающего помещения. Мы уже упоминали, что разные типы датчиков способны на ложное срабатывание из-за пыли, повышенных температур и даже высокой влажности. Понятно, что в условиях производственного цеха, возможно, просто нет возможности сильно улучшить условия, но тогда нужно более ответственно подойти к выбору типа датчика и выбрать тот, который не станет реагировать на естественные условия охраняемой территории как на пожар.

Вечной проблемой, причем серьезной, остается вмешательство неквалифицированных людей на любом этапе. При монтаже нужно обязательно проверить сертификаты и убедиться любым доступным способом, что ваши монтажники – люди толковые. Самостоятельно устанавливать пожарную сигнализацию не рекомендуется категорически – если вы так поступаете, ответственность целиком ложится именно на вас. Так же недопустимо пытаться устранить мелкие поломки, даже если они кажутся вполне решаемыми – в этом случае следует вызывать специалистов.

Как и любая другая система, пожарная сигнализация со временем выходит из строя по причине износа – обычно для нее устанавливается срок эксплуатации, после которого все ее детали придется менять даже в том случае, если при проверке она все еще реагирует на раздражающий фактор.

Все остальные причины обычно довольно банальны и связаны с выходом из строя одного из узлов, даже не входящего непосредственно в состав системы – например, при отсутствии электричества сетевая система, конечно же, не работает. Из-за неаккуратного обращения могут оказаться поврежденными кабели электропитания или канал связи с пожарным пультом, может отказать шлейф или сломаться сирена оповещения присутствующих. Возможен и сугубо программный сбой в виде неправильной даты и времени, из-за чего могут проявиться и более серьезные последствия.

Монтаж пожарных извещателей, безусловно подразумевает их соединение в шлейф пожарной сигнализации. Схема подключения пожарных извещателей приводится ниже. Рассматриваются двухпроводные (наиболее часто используемые)

  • извещатели пожарные дымовые (ДИП),
  • извещатели пожарные тепловые (ИП),
  • извещатели пожарные ручные (ИПР).

Схема подключения охранных извещателей приведена на другой странице.

Шлейф пожарной сигнализации может одновременно содержать извещатели одного или нескольких (комбинированный шлейф сигнализации) указанных типов. Кроме того, схема подключения пожарных извещателей может предусматривать срабатывание приемно контрольного прибора пожарной сигнализации (формирование извещения "пожар") при срабатывании только одного датчика шлейфа пожарной сигнализации или при срабатывании двух и более пожарных извещателей. (такая организация шлейфа пожарной сигнализации после срабатывания одного извещателя формирует сигнал "внимание").

Адресные пожарные извещатели также имеют свою схему подключения. Хочу заметить- схема подключения датчиков пожарной сигнализации может варьироваться (зависит от типа приемно контрольного прибора), однако, различия незначительны, главным образом затрагивают номиналы (значения) дополнительных (балластных), оконечных (выносных) резисторов.

Кроме того, различные типы приемно контрольных приборов допускают подключение различного максимального количества дымовых пожарных извещателей в один шлейф сигнализации- эта величина обуславливается суммарным током потребления датчиков. Помните- ток потребления дымового извещателя зависит от его типа.

Все типы неадресных дымовых двухпроводных извещателей используют одинаковую нумерацию выводов:(1,2,3,4).

Схемы подключения выводов дымовых извещателей различных производителей визуально могут несколько отличаться (варианты 1,2), но, с точки зрения электрики, являются идентичными, ибо внутри корпуса извещателя выводы 3,4- короткозамкнуты.

Однако, второй вариант имеет серьезный недостаток - при извлечении извещателя из розетки приемно - контрольный прибор не обнаружит его отсутствия и не сформирует сигнал "неисправность". Поэтому лучше его не использовать.

Обратите внимание!

  • Даже для одного конкретного типа приемно контрольного прибора пожарной сигнализации резисторы Rдоп. могут иметь различные значения (определяется током потребления различных типов дымовых извещателей, читайте паспорт прибора внимательно).
  • Приведенная схема подключения пожарного ручного извещателя справедлива когда его исполнительным элементом являются нормально замкнутые электрические контакты. Например, для ИПР 3 СУ эта схема подключения не подойдет.
  • Тепловые пожарные извещатели подключаются по приведенной схеме если имеют нормально замкнутые контакты (таких большинство).
  • Может возникнуть ситуация, когда ИПР, подключенный по приведенной (рекомендованной паспортом прибора) схеме для шлейфа сигнализации, предусматривающего сработку по двум датчикам, срабатывая вызывает формирование приемно контрольным прибором сигнала "внимание" вместо "пожар". Попробуйте тогда уменьшить номинал резистора (Rдоп), через который этот ИПР подключается в шлейф сигнализации.
  • Перед подключением (установкой) адресных извещателей, их адрес должен быть предварительно запрограммирован.
  • Подключение дымовых пожарных извещателей требует соблюдения полярности шлейфа сигнализации .

Подключение объектов к системе пожарной сигнализации

Своевременное обнаружение возгорания крайне важно — масштаб ущерба от пожара напрямую зависит от того, как быстро его начнут тушить. Подключение к пожарной сигнализации (АУПС) — первоочередная задача в обеспечении безопасности любого офиса, автостоянки, АЗС, склада, производства, супермаркета или отеля.

Российские нормативные документы по пожарной безопасности строго регламентируют перечень зданий, сооружений и помещений, подлежащих обязательному оснащению автоматической пожарной сигнализацией (см. ниже табл. 1-1, 1-2, 1-3). Основная цель таких систем — раннее обнаружение возгорания и оповещение о нем персонала.

Пожарные сигнализации постоянно совершенствуются, и современные системы весьма надежны и сложны. Автоматическая пожарная сигнализация, если она интегрирована в комплексную систему безопасности, выполняет сразу несколько функций — не только оповещает людей о начавшемся пожаре, но также запускает СОУЭ — алгоритм светозвукового управления эвакуацией, и АУПТ — автоматические установки пожаротушения. Кроме того, к единому прибору контроля и управления могут быть подключены охранные детекторы (движения, звука, изменения объема, температуры), датчики протечки воды, газовые анализаторы...

Любая пожарная сигнализация представляет собой целый комплекс разных технических средств — обязательных и опциональных. Поэтому правильный выбор АУПС и ее элементов зависит от многих факторов — размеров объекта, функционального назначения, класса его конструктивной пожарной опасности и степени огнестойкости, объемно-планировочных и технических особенностей.

Таблица 1-1. Здания, подлежащие оснащению АУПС в обязательном порядке

(согласно Приложению А свода правил СП 5.13130.2009)

 

 

Таблица 1-2. Сооружения, подлежащие оснащению АУПС в обязательном порядке

(согласно Приложению А свода правил СП 5.13130.2009)


Таблица 1-3. Помещения, подлежащие оснащению АУПС — без помещений связи и транспорта

(согласно Приложению А свода правил СП 5.13130.2009)


Виды систем пожарной сигнализации: какую выбрать?

Все АУПС можно разделить на три типа. Собственно, пожарные извещатели (ИП) также бывают трех типов — неадресными, адресными и адресно-аналоговыми. Тип извещателей и АУПС должны соответствовать друг другу, чтобы обеспечивать совместимость системы. Хотя к адресным приборам приемно-контрольным и управления (ППКУ) — пожарным панелям и пультам — все же можно подключать неадресные ИП посредством других неадресных ППКУ или специальных модулей.

Безадресные АУПС

В этих системах используются самые простые датчики. Группа извещателей включается в общий шлейф охранно-пожарной сигнализации, и в случае срабатывания одного из датчиков сигнализации формируется обобщенный сигнал тревоги. Безадресные системы подходят для небольших и не особо ответственных объектов.

Адресные АУПС

Такие системы позволяют установить точное место возникновения пожара. Они отличаются наличием в извещении информации об адресе прибора сигнализации, указывающим зону возникновения очага возгорания с точностью до места расположения извещателя. Кроме того, адресные ППКУ отображают на дисплее поступившие от ИП сигналы в текстовом формате («Пожар» или «Неисправность»), очередность и время их поступления, после чего вся информация шифруется и архивируется на носителе. Если системы пожарной сигнализации и все ее элементы работают по радиоканальным линиям связи, они должны быть только адресными. Адресные системы предназначены для контроля средних и крупных объектов.

Адресно-аналоговые АУПС

В адресно-аналоговой системе пожарной сигнализации применяются извещатели, которые в режиме реального времени передают текущие значения контролируемого параметра вместе с адресом расположения датчика. Подобный способ контроля объекта позволяет вовремя обнаруживать и возгорание, и неисправность самих датчиков (например, в случае поломки или загрязнения). Помимо этого, адресно-аналоговые системы могут изменять порог чувствительности извещателей и адаптировать его к условиям эксплуатации на объекте.

Типы датчиков (извещателей) пожарной сигнализации

Основная задача пожарной сигнализации — своевременное обнаружение пожароопасной ситуации. Эта задача возложена на датчики. В современных сигнализациях используются самые различные извещатели, которые отличаются друг от друга по типам контролируемых параметров. Их классификация (см. табл. 2) приведена в национальном стандарте «ГОСТ Р 53325-2012. Техника пожарная. Технические средства пожарной автоматики. Общие технические требования и методы испытаний» (с Изменением № 2 от 15 мая 2018 года). Существуют также мультисенсорные датчики, которые подают сигнал тревоги на основе одновременного анализа нескольких факторов пожара. Комбинированные пожарные извещатели имеет смысл использовать в том случае, если преобладающий фактор пожара не определен или неизвестен. Мы рассмотрим подробнее только самые распространенные разновидности извещателей — тепловые, дымовые и пламени.

Таблица 2. Как правильно «читать» обозначение на пожарных извещателях


Температурные датчики (ИПТ)

Тепловые извещатели могут оценивать динамику нарастания температуры в помещении — они носят название дифференциальных, либо срабатывать при достижении заданных значений температуры (обычно в широком температурном ряде: 50; 60; 70; 80; 90; 100; 120; 140; 160; 180; 200; 250; … °C) — их называют пороговыми, или максимальными. Выпускаются также тепловые датчики, способные учитывать оба этих параметра — максимально-дифференциальные, они выполняют функции максимального и дифференциального ИПТ по логической схеме «ИЛИ».

Дифференциальные тепловые извещатели измеряют скорость нагрева (°C/мин) защищаемого объема в температурном ряде (1; 3; 5; 10; 20; 30; …) или скорость достижения заданных значений (°C) в ступенчатом ряде (30; 50; 100; …). Чувствительность извещателей зависит не только от точности и частоты измерений, заложенных производителем, но и от настройки значений. Высокая чувствительность далеко не всегда означает «хорошо», ведь она может приводить к частым ложным срабатываниям. Поэтому выбором датчиков и выставлением критических значений должны заниматься только опытные сертифицированные специалисты.

Конструкционно тепловые извещатели могут быть:

·         точечными — с одним чувствительным элементом в корпусе;

·         многоточечными — с несколькими чувствительными элементами, расположенными на протяжении одной линии;

·         линейными — с одним чувствительным элементом (так называемым термокабелем), но протянутым вдоль всей линии.

Дымовые датчики (ИПД)

Извещатели дыма анализируют наличие продуктов горения в воздухе в объеме защищаемого помещения. С точки зрения физических принципов анализа обстановки их подразделяют на оптические (оптико-электронные), электроиндукционные, ионизационные — для помещений с людьми, а также на радиоизотопные — для складов и других зданий и сооружений без постоянного пребывания людей. Радиоизотопные отличаются чрезвычайной точностью и чувствительностью, а поэтому незаменимы при защите объектов для хранения оружия и взрывоопасных веществ, быстро возгораемых и тлеющих материалов, при защите некоторых производственных объектов. Электроиндукционные извещатели — дорогие сверхвысокоточные анализаторы состава воздуха, они применяются на объектах особой важности, включая МКС.

Существуют также аспирационные дымовые извещатели (ИПДА) — конструкции, состоящие из множества трубок-воздуховодов, которые с определенными интервалами времени осуществляют принудительный забор проб воздуха из множества точек в помещении (в помещениях) и централизованно поставляют их (не более чем за 60–120 с) в один или несколько газоанализаторов. Газоанализаторы при этом могут иметь различную точность и принцип действия: оптический (лазерный), ионизационный, электроиндукционный и т.п. ИПДА используются в сложных и крайне дорогостоящих системах пожарной сигнализации, которые оправданы на важных и таких же дорогих объектах — в архивах, дата-центрах, музеях, подземных хранилищах, на кораблях…

Дымовые оптико-электронные извещатели, как и тепловые, бывают точечными (ИПДОТ), многоточечными (ИПДМ) и линейными (ИПДЛ). Они анализируют изменения оптической плотности среды, то есть ее способность к преломлению света. Для этого в извещателях дыма используются излучатели с инфракрасным (ИК) или ультрафиолетовым (УФ) диапазоном и приемник в виде, например, черно-белой CMOS-матрицы. Однако более точными, чувствительными и при этом не имеющими ложных срабатываний — в частности, на пыль, газ, аэрозоль, насекомых, тень от пролетающих за окном птиц, на предметы, блокирующие луч, на деформацию строительных конструкций — являются двухдиапазонные приборы (ИК+УФ). Оптико-электронные ИПД — лучшее решение для жилой и коммерческой недвижимости по соотношению цена/качество.

Датчики пламени (ИПП)

Эти извещатели реагируют на электромагнитное излучение от огня или тлеющего очага. Чувствительные элементы в ИПП могут быть специализированы для анализа определенного спектра:

·         видимого,

·         УФ (ультрафиолетового),

·         ИК (инфракрасного),

но также бывают многодиапазонные извещатели пламени.

Огонь при горении конкретных материалов и веществ имеет индивидуальную спектральную характеристику, так что тип датчика выбирается с учетом особенностей потенциальных объектов горения, хранящихся или находящихся в помещении, сооружении или здании, — тех источников излучения, которые расположены в зоне действия ИПП.

 

Универсального ответа на вопрос, какие АУПС и извещатели лучше, не существует — все зависит от характеристик защищаемого объекта. Грамотно разработать проект может только профессионал, точно знающий, где и какие расположить извещатели, чтобы сигнализация была максимально эффективной, и какой тип сигнализации оптимально подходит для каждого конкретного помещения, здания или сооружения.

Подключение к пожарной сигнализации могут осуществлять только сертифицированные специалисты с допусками СРО и специализированные организации, имеющие лицензию МЧС России. Альянс «Комплексная безопасность» с 2000 года выполняет проектирование, монтаж, пуско-наладку, программирование и сервисное обслуживание систем пожарной сигнализации. Мы используем оборудование и программное обеспечение лучших мировых и российских производителей и предоставляем трехлетнюю гарантию на все виды работ.


Разновидности пульта пожарной охраны и необходимость его применения. Схема охранной сигнализации Как подключить пульт пожарной сигнализации

1 . Общие положения

Под энергоснабжением системы охранно-пожарной сигнализацией (ОПС) понимают электропитание источников питания постоянного тока ОПС от сети переменного тока напряжением 220 В и частотой 50 Гц.
Данный стандарт подключения составлен на основании правил устройства электроустановок (ПУЭ) и указывает выбор точки подключения к электроснабжению, правила проектирования цепи энергоснабжения до места подключения источника электропитания (ИЭП) системы ОПС, технику безопасности при проведении обследования объекта на предмет энергоснабжения и монтажно-технических работ, систему обозначения схем энергоснабжения и цветомаркировку соединительных проводов.

2 . Введение

Любая электронная система безопасности объекта должна осуществлять электропитание от сети переменного тока напряжением 220 В частотой 50Гц. Цепи электропитания системы ОПС от сети переменного тока должны быть независимы от других цепей электроснабжения объекта. Данные требования объясняются тем, что в случае перегрузки по цепи электроснабжения, в которую подключена система ОПС, срабатывает автоматический разъединитель и это может привести к отключению электропитания системы ОПС.

Для стабильной работы цепи электроснабжения системы ОПС необходимо правильно рассчитать мощность потребляемую системой и правильно в проектной документации заложить предельно-допустимый ток срабатывания автоматического разъединителя и сечение соединительных проводов.

3 . Допуск на обследование объекта и обследование объекта, проектирование и подключение ИЭП ОПС к энергоснабжению

Для обследования объекта по цепям электроснабжения с целью подключения источников электропитания комплексной системы ОПС заказчик должен предоставить действующую документацию электроснабжения объекта. В случае отсутствия документации, подключение производится от вводного главного щита или его дублирующего щита через свободный автоматический разъединитель. Если он отсутствует, то устанавливается дополнительный автоматический разъединитель и от него через разрыв цепи фазного провода прокладывается магистраль электроснабжения по объекту. Это должно быть отображено и спроектировано в рабочем проекте и согласовано с заказчиком.

Обследование объекта должен производить инженер электрик со степенью допуска по электробезопасности не ниже четвертой, совместно с энергослужбой представителя заказчика. Точки подключения источников электропитания комплексной системы ОПС оговариваются с представителем энергоцеха заказчика и утверждаются заказчиком после предоставления проектной документации (указывается в проекте какой номер распределительного шита и на какой автоматический разъединитель производится подключение. Например: для подключения комплексной системы ОПС предоставляют автоматический разъединитель № 8 распределительного щита №2 см.(Рис. 1).

Если распределительный щит загружен и нет возможности добавить автоматический разъединитель для подключения системы ОПС то по согласованию с представителем энергоцеха заказчика предлагается разместить рядом распределительный щит или бокс, в котором устанавливается отдельный независимый автоматический разъединитель.

Автоматический разъединитель рассчитывается при проектировании на предельно допустимый ток потребления источника электропитания ОПС от электрической сети с целью защиты его от перегрузки по току потребления. Схема подключения бокса или распределительного щита приведена на Рис 2.Подключение фазного провода в уже имеющемся распределительном щите производится до автоматического разъединителя. Рабочий нейтральный провод « N » подключается от прежнего распределительного щита без разрыва в колодку « N » нового распределительного щита. Корпуса распределительных щитов соединяются между собой перемычкой с помощью резьбового соединения и от этой точки соединения отводится проводник, являющийся нулевым защитным проводником – « РЕ ».

Если в прежнем распределительном щите уже имеется колодка с нулевым защитным контактом, то проводник « РЕ » отводится от этой колодки. Во вновь созданном распределительном щите или боксе устанавливается автоматический разъединитель (см. Рис 2).

Если объект имеет несколько этажей, то в точке подключения источников электропитания комплексной системы ОПС можно устанавливать дополнительные боксы соединенные между собой и точкой подключения к сети энергоснабжения шлейфом.

4 . Система обозначения и маркировка проводов по цвету

При проектировании цепей энергоснабжения применяются следующие обозначения (согласно правил устройства электроустановок):

О——————————— — первая фаза (L1)

О——————————— — вторая фаза (L2)

О——————————— — третья фаза (L3)

О——————-/———— — нейтральный провод (нулевой рабочий проводник N)

О———————/———— — заземляющий провод (нулевой защитный проводник РЕ)

О———————/———- — совмещенный нулевой рабочий и защитный проводник (РЕN)

————— —————- — контакт автоматического разъединителя.

Cогласно ПУЭ (пункт 1.1.29) буквенно-цифровое и цветовое обозначение одноименных шин (проводов) в каждой электроустановке должны быть одинаковыми:

— при переменном трехфазном токе шины фазы (проводов) L1 окрашены желтым цветом, фазы L2 – зеленым, фазы L3 – красным, нулевая рабочая шина (провод) N – голубым, шина (провод), используемая в качестве нулевой защитной РЕ продольными полосами желтого и зеленого цветов;
— при переменном однофазном токе: шины (провода) L1, L2,L3, соответствующим цветом, в зависимости от того, какая фаза использована, нулевая рабочая шина (провод) N –голубым цветом, шина (провод) нулевая заземляющая РЕ – желто-зеленым цветом …

Если приведенные выше цвета в электрическом кабале отсутствуют, то выбираются подобные цвета или другие цвета проводов, но в данной электрической системе цветовая маркировка проводов должна быть по возможности единой, провода N и РЕ должны быть по возможности голубой цвет – N, желтозеленый –РЕ.

5 . Размещение точки подключения ИЭП ОПС к энергоснабжению

Энергоснабжение ОПС осуществляется от однофазной сети переменного тока напряжением 220В частотой 50Гц и подключается к энергосистеме объекта. Токи потребления комплексной системы ОПС от сети переменного тока меньше, чем потребление от ИЭП по цепи постоянного тока.

В целях уменьшения потерь на активное сопротивление проводов и кабелей источники электропитания постоянного тока (ИЭП) системы ОПС должны находится как можно ближе к приемно–контрольным приборам. Поэтому, при размещении приемно–контрольных приборов и устройств электропитания необходимо учитывать расположение распределительного щита или бокса, к которому проектируется подключение ИЭП к сети переменного тока.

6 .Защитное заземление

Системы электроснабжения классифицируются Международной электротехнической комиссией (МЭК) в зависимости от способа заземления распределительных сетей и примененных мер защиты от поражения электрическим током. Распределительные сети подразделяются на сети с изолированной нейтралью и заземленной нейтралью. Стандарт МЭК – 364 подразделяет распределительные сети в зависимости от конфигурации токоведущих проводников, включая нулевой рабочий (нейтральный) проводник и типов систем заземления

Все установки переменного и постоянного тока напряжением до 1000 В должны удовлетворять требованиям основного правила устройства электроустановок. Одним из требований ПУЭ является защитное заземление. Кроме того заземление металлических корпусов электронных устройств системы ОПС защищает само устройство от электромагнитных помех и излучений.

Для качественного заземления электронных блоков необходимо иметь контур заземления, удовлетворяющий требованиям ПУЭ. Следовательно, при обследовании объекта необходимо обратить особое внимание на имеющийся контур заземления. Необходимо потребовать от заказчика полную документацию на контур заземления с очередной аттестацией Госэнергонадзора. Если срок поверки истёк, необходимо потребовать от заказчика провести поверку контура заземления и предоставить акт поверки. В акте обследования необходимо отметить состояние контура заземления, подтвержденное заказчиком.

Если контур заземления отсутствует или не удовлетворяет требованиям ПУЭ, его необходимо спроектировать, внести в проектную документацию и в смету. В процессе монтажа на объекте прокладывается контур заземления, затем его аттестовывают. Параметры проекта контура заземления и изготовленный контур должны соответствовать требованиям ПУЭ.

Для заземления электроустановок в первую очередь должны быть использованы естественные заземляющие устройства. Искусственные заземлители должны применяться лишь при необходимости снижения плотности токов, протекающих по естественным защитным проводникам (РЕ – и РЕN – проводникам) или стекающих с естественных заземлителей.

6 . Отображение в проектной документации

Все вышеуказанные параметры по энергоснабжению питающей сети ИЭП системы ОПС должны быть отображены в отдельном разделе проектной документации с указанием всех деталей подключения электропитания от сети переменного напряжением 220В. В проекте необходимо обязательно отобразить электрическую схему с указанием распределительного щита, от которого произведено подключение дополнительного распределительного щита (бокса). В спецификации указать какой автоматический разъединитель, тип и сечение кабелей и проводов, заложенных при проектировании.

7 . Техника безопасности

Обследование объекта на предмет электроснабжения должно производится двумя лицами, причем один из них должен иметь группу по электробезопасности не ниже четвертой, другой не ниже третьей.
Инженер – электрик представитель производителя работ должен осматривать объект с представителем энергоцеха заказчика во избежание аварийных ситуаций.
Электрический распределительный щит, который подвергается обследованию, может находится под напряжением либо линейным (трёхфазная сеть 380В), либо фазным напряжением (однофазная сеть 220В). Опасные токоведущие части распределительного щита не должны быть доступны для преднамеренного прямого прикосновения к ним, а доступные к прикосновению открытые проводящие части, защитные проводники (РЕ), а также открытые токоведущие части цепей обратного тока, включая РЕN – проводники, не должны быть опасны при прямом прикосновении к ним.

При обследовании распределительного щита необходимо убедиться, что корпус распределительного щита имеет хорошее заземление.

Производить какие–либо действия в распределительном щите необходимо одной рукой, причем манжет одежды должен быть застёгнут плотно на кисте руки. Не должно быть болтающихся частей одежды, которыми можно было бы зацепиться за токоведущие шины. Замеры, подтверждающие наличие фазного напряжения в распределительном щите необходимо производить исправным измерительным инструментом в соответствии с ПУЭ. Щупы приборов должны быть изолированными и аттестованными на пробивное напряжение.

Литература :

1. Правила устройства электроустановок (шестое переработанное и дополненное с изменениями).
2. Р.Н. Карякин « Устройство безопасных электроустановок

Разработал: Мулкиджанян П.П.
Методист ООО «Комби-Сервис»

Статистика большого количества возгораний подтверждается ежедневным реагированием пожарных расчетов. Причины пожара могут быть разнообразными - от курения в неположенном месте и до замыкания электропроводки и поджогов. предупреждает о возгорании и позволяет вовремя устранить источник.

Что такое пожарная сигнализация

Первичные регистрирующие устройства - датчики - предназначены для своевременного и быстрого обнаружения первых признаков возгорания и дыма. Датчик может либо самостоятельно активировать тревогу, либо приводить в действие систему оповещения, включать пожаротушение и передавать данные в аварийно-спасательную часть МЧС. Пожарная сигнализация представляет собой описанную выше совокупность технических средств первичного обнаружения и информирования.

Правильная настройка и своевременная проверка систем пожарообнаружения играют немаловажную роль. Датчики за время длительной эксплуатации могут испачкаться, выйти из строя, что сказывается на их работоспособности и, как следствие, на сохранности жизни и имущества людей. Быстрое обнаружение очага возгорания и расшифровка информации о его местоположении способны решить различные задачи:

  • Активация системы пожаротушения и информирование пожарного расчета МЧС.
  • Проведение эвакуации людей.
  • Локализация очага возгорания.
  • Понижение финансовых трат.
  • Минимизация травм и смертей среди людей.

Виды пожарной сигнализации

Комплектующие современных пожарных систем могут отличаться. Принцип работы и тип сигнализации определяют выбор необходимого оборудования - кабелей, датчиков, блоков питания и т. д. По структурной схеме пожарные сигнализации бывают:

  • Пороговыми с радиальным шлейфом.
  • Пороговыми с модульным построением.
  • Адресно-аналоговыми.
  • Адресно-опросными.
  • Комбинированными.

Адресно-аналоговые системы

Для сбора и анализа информации, получаемой с датчиков влажности, температуры, дыма и прочих, создаются адресно-аналоговые пожарные системы. Приемно-контрольный прибор считывает в реальном времени показания датчиков, каждому из которых присвоен конкретный адрес местонахождения. Полученная от разных датчиков информация анализируется, после чего посредством адресной сигнализации определяется местоположение очага воспламенения и подается сигнал и пожаре. Структура адресных шлейфов кольцевая, на каждый из них подключается до 200 датчиков и устройств:

  • Ручные и автоматические извещатели.
  • Реле.
  • Модули контроля.
  • Оповещатели.

Достоинства адресно-аналоговой пожарной сигнализации:

  • Почти полное отсутствие ложных тревог.
  • Быстрое обнаружение очага возгорания.
  • Возможность настройки чувствительности сенсоров.
  • Минимальные расходы на подключение схемы пожарной сигнализации и ее последующее техническое обслуживание.

Адресно-опросные

В адресных и пороговых системах сигнал о пожаре формируется самим датчиком. Протокол обмена информацией реализуется в шлейфе с целью определения сработавшего датчика. В отличие от адресно-аналоговой системы, алгоритм работы адресно-опросной проще. От сенсоров поступают сигналы на контрольную панель управления, затем осуществляется циклическое опрашивание извещателей для выяснения их состояния. Недостатком таких систем является увеличение времени обнаружения источника возгорания.

Преимущества сигнализаций:

  • Оптимальное соотношение цены и качества.
  • Информативность получаемых сигналов.
  • Контроль настроек и функциональности извещателей.

Пороговая

Система пожарной сигнализации со схемой, в которой у каждого датчика-извещателя имеется определенный порог чувствительности. Сигнал тревоги в ней срабатывает по номеру одного из сенсоров. Такие пожарные системы устанавливаются на небольших объектах - в детских садах и магазинах. Их минусом является минимальная информативность - срабатывает только сенсор - и отсутствие указания местонахождения очага возгорания. К преимуществам относят невысокую стоимость самой сигнализации и процесса ее установки.

Конструкция пожарных систем

Схема охранно-пожарной сигнализации представлена датчиками, сигнализирующими о появлении дыма, системой сбора, контроля и передачи данных. Каждый из элементов пожарной системы отвечает за конкретные задачи:

  • Охранно-пожарная панель - активирует систему.
  • Датчики - фиксируют задымление и подают соответствующий сигнал.
  • Приемно-контрольные панели - собирают и обрабатывают поступающую информацию, передают сигналы соответствующим службам.
  • Периферийное оборудование - обеспечивает линии связи, электропитание, активацию системы пожаротушения, методы информирования.
  • Оборудование центрального управления ОПС - охранно-пожарной сигнализации - получает сигнализацию от разных объектов и собирает информацию для отделений МЧС.

Принцип работы

Система функционирует на основе поочередного опроса всех датчиков и выявления факта срабатывания одного из них в случае с пороговыми системами либо изменения параметров среды в случае с адресно-аналоговыми системами. Пороговые системы при срабатывании датчика обрывают весь шлейф, что сигнализирует о наличии очага возгорания в зоне расположения данного шлейфа. Активация орошения в зоне задымления происходит в автоматических системах пожаротушения после получения соответствующего сигнала, который также подает сигнал тревоги и посылает вызов на центральный пульт.

Датчики пожарной системы

Основная функция сигнализации - быстрое реагирование на изменение параметров среды. Датчики отличаются друг от друга по принципу работы, типу контролируемого параметра, способу передачи информации. Принцип функционирования может быть двух типов - пассивного и активного: первый подразумевает только срабатывание, второй - срабатывание и мониторинг параметров окружающей среды. В зависимости от уровня угрозы активные извещатели подают различные сигналы на пост автоматического управления.

Осуществляют забор проб воздуха, его доставку и анализ. Сенсоры отличаются друг от друга контролируемыми физическими параметрами, по которым делятся на несколько категорий:

  • Тепловые.
  • Дымовые.
  • Пламени.
  • Утечки природного/угарного газа.
  • Утечки воды.

Принцип работы дымового датчика

Извещатель задымления, входящий в схему пожарной сигнализации, предназначен для определения источника воспламенения посредством обнаружения задымления в той части здания, где он находится. Датчики такого типа оптические - генерирование электрического сигнала происходит посредством фиксации света от светодиода фотоэлементом воздушной камеры. При ее задымлении на фотоэлемент поступает меньшее количество света, что приводит к срабатыванию датчика. Рабочий диапазон температур датчиков - от -30 до +40 градусов.

Нормативы установки

Пожарной сигнализации осуществляется согласно официальной документации - нормативам пожарной безопасности НПБ 88-2001, в которых указаны правила проектирования, монтажа и эксплуатации подобных систем. Процесс создания разнообразных комплексов пожаротушения регламентирован данными правилами. Например, площадь и высота потолков помещения определяют количество точечных дымовых датчиков и их расположение относительно друг друга.

Схема подключения датчиков пожарной сигнализации

Датчики объединяются в единую систему посредством проводов. Некоторые типы извещателей могут транслировать сигналы блоку управления без подключения проводки.

Подключение схемы пожарной сигнализации выполняется после определения необходимого количества датчиков. Непосредственно перед монтажом размечаются местоположения блока управления, ручных пожарных извещателей и системы оповещения. Для этого подойдут места с открытым доступом: в случае возгорания ничего не должно мешать добраться до извещателей и прочих элементов системы.

Большинство схем пожарной сигнализации подразумевают крепление детекторов к потолку. Их маскировка отделочными материалами возможна при условии сохранения эффективности их работы.

Датчики подключаются к блоку управления.

Установка пожарной сигнализации

Первый этап монтажа включает выбор схемы пожарной сигнализации, основного и дополнительного оборудования и охранной системы. Совмещение пожарной и охранной систем создает охранно-пожарный комплекс. Монтаж и подключение пожарной сигнализации на выбранном заказчиком объекте осуществляются в несколько этапов:

  • Проектирование схемы пожарной сигнализации.
  • Прокладка кабелей и шлейфов.
  • Установка датчиков.
  • Проведение пуско-наладочных работ.

Перед размещением сигнализации оценивается площадь помещения, в котором будет проводиться монтаж. Для этого определяется радиус действия детекторов. Делать это лучше всего совместно со специалистами.

Работе установленных извещателей не должны мешать сторонние раздражители: к примеру, запахи из кухни могут спровоцировать реакцию Тепловые датчики должны размещаться на расстоянии от источников искусственного тепла.

Мультисенсорные датчики повышают эффективность работы пожарной сигнализации, особенно если она устанавливается в многоэтажном здании. Возможен вариант, при котором предусмотрена комбинированная схема датчиков пожарной сигнализации, сообщающихся друг с другом посредством радиоуправления.

Система оповещения устанавливается таким образом, чтобы сигнал тревоги был слышен всем людям, находящимся в помещении или здании.

Главной рекомендацией является своевременное техническое обслуживание сигнализации. Для этого системы периодически проверяют и перенастраивают. Некоторые модели оснащают защитой от насекомых, пыли, влаги и прочих раздражителей.

Комплектация противопожарных систем включает инструкцию по установке и эксплуатации. При соблюдении указанных производителем рекомендаций приборы могут прослужить длительное время.

Схема пожарной сигнализации "Болид"

На российском рынке представлен широкий ассортимент систем безопасности, но наиболее популярной и распространенной считается охранно-противопожарная сигнализация Bolid.

Охранно-пожарная система Bolid представляет совокупность технических средств, действие которых направлено на сбор данных от разных оповещателей и датчиков и их преобразование в информацию, передаваемую операторам в случае возникновения возгорания либо проникновения на охраняемую территорию сторонних лиц.

Функционал сигнализации Bolid позволяет:

  • Осуществлять постоянный надзор за объектом при помощи камер видеонаблюдения.
  • Подача сигнала тревоги в случае выхода оборудования из строя.
  • Определение места нарушения охраняемого периметра.
  • Автоматическая активация системы пожаротушения при возникновении очага возгорания.
  • Быстрое обнаружение факта увеличения температуры, задымления помещения или воспламенения.

Своевременное обнаружение пожара позволяет спасти жизни многих людей и сохранить ценное имущество. Для этого применяется пожарная сигнализация, схема и составляющие которой могут варьироваться в зависимости от типа здания и поставленных перед системой задач. Её главная функция - оперативно подать сигнал о начавшемся возгорании, после чего его можно будет быстро локализовать.

    Показать всё

    Назначение сигнализации

    Способы извещения об экстренных ситуациях существуют с древних времён. Ещё много веков назад люди передавали информацию на расстоянии при помощи костров, световых сигналов, звона колоколов или других далеко разносящихся звуков.

    В современном мире такую роль выполняют различные виды сигнализаций. Принцип работы пожарного оповещения заключается в фиксации данных о состоянии помещения при помощи многочисленных датчиков. Если какие-то показания отличаются от нормы, они передаются в дежурную службу, которая в кратчайшие сроки прибывает на место и тушит огонь.

    Быстрая проверка шлейфов сигнализации

    В число дополнительных функций ОПС (охранно-пожарной сигнализации) могут входить:

    Так как возникновение пожара несёт с собой опасность для человеческих жизней и материальных ценностей, законы регламентируют установку систем противопожарной безопасности в административных зданиях. Если же соответствующих постановлений нет, владельцы помещения сами могут решать, устанавливать ОПС или нет.

    Используемые устройства

    В состав противопожарной сигнализации входит множество устройств. Их можно разделить на следующие категории:

    • сенсорные приборы - датчики и извещатели, находящиеся в разных местах здания и фиксирующие показатели окружающей среды;
    • устройства, получающие и обрабатывающие данные, приходящие с сенсорных приборов;
    • центральный компьютер или другое управляющее оборудование, которое контролирует работу всей остальной техники;
    • системы для информирования людей об аварийной ситуации.

    К контрольной панели могут подключаться отдельные периферийные устройства. Вот некоторые из них:

    • звуковые и световые оповещатели;
    • принтеры сообщений, печатающие служебную и тревожную информацию;
    • пульт управления;
    • модуль для изоляции короткого замыкания.

    Ардуино + ИП212 пожарный извещатель (пожарная сигнализация)

    Общая схема сигнализации довольно проста: датчики фиксируют начало пожара, передают эту информацию на программу обработки, которая сообщает о ситуации в центр мониторинга.

    Датчики, задействованные в системе, могут делиться на два основных типа:

  1. 1. Активные - постоянно издают сигнал и фиксируют его неизменность. Если в нём происходят какие-то изменения, ситуация трактуется как пожароопасная.
  2. 2. Пассивные - реагируют на перемены в окружающей обстановке, возможно, вызванные возгоранием.

Механизм действия этих приборов тоже может отличаться. По внутреннему устройству их можно поделить на:

  • инфракрасные;
  • магнитокрасные;
  • комбинированные;
  • реагирующие на разбитие стекла;
  • задействующие активные переключатели на периметре.

Виды пожарных извещателей

Есть три основных способа понять, что начался пожар: зафиксировать поднявшуюся температуру, появление дыма или вспышку яркого света. Существуют и другие алгоритмы работы, но эти факторы используются чаще всего. Основываясь на этом параметре, пожарные датчики делятся на четыре типа:

Такие приборы могут лишь собирать данные и передавать их в контрольную систему. Их анализом и реагированием на ситуацию занимаются другие типы устройств.

Сигнализация Дачник как подключить самому"

Дымовые датчики

Так как при возникновении пожара дым поднимается в верхнюю часть помещения, устройства для обнаружения задымления обычно размещаются на потолке.

Внутренняя часть прибора состоит из оптической системы, электронной платы и разъёмного корпуса. Эти три элемента создаются на фабриках по отдельности, в автоматическом режиме, а затем вручную собираются.

Чтобы обнаружить появление дыма, используется оптическая система, состоящая из фотоэлемента и светодиода. Из светодиода всё время исходит свет, направленный в определённую точку. Фотоэлемент находится немного в стороне от луча света, испускаемого светодиодом, и преобразует падающий на него световой поток в электрический сигнал.

Принцип работы датчика прост. Когда воздух, попадающий в прибор, чист и в нём нет дыма, луч света попадает строго туда, куда он и был направлен. Однако с возникновением дыма лучи рассеиваются и начинают распространяться в разные стороны, в том числе попадая и на фотоэлемент. В этот момент он срабатывает, и этот сигнал считывается электронной схемой, которая передаёт информацию на командный пункт пожарной сигнализации.


Из-за конструкции прибора он может сработать, даже когда возгорания не было, а вместо дыма в него попали газы или водяной пар. В этом случае световой поток тоже будет искажён, и на главный компьютер поступит сигнал о пожаре. Поэтому, устанавливая датчики, нужно учитывать условия окружающей среды. Неподходящее место для них - ванная, душевая или кухня. Кроме того, если на участке постоянно курят, это тоже может вызвать ложную тревогу.

Так как не все типы пожара сопровождаются мгновенным и сильным задымлением, а на изменения света и тепла извещатель не реагирует, его монтируют в тех помещениях, где, скорее всего, загорятся ткани или будет повреждена изоляция электрических проводов. В число таких предприятий входят электрические лаборатории и подстанции, комнаты с большим количеством работающего электрооборудования на предприятиях и склады, где хранятся различные товары.

Тепловые приборы

Они устанавливаются на потолке, куда поднимается тепло при возгорании, и бывают двух видов:

  • фиксирующие достижение предельного значения нагрева;
  • анализирующие скорость возрастания температуры.

Изначально были изобретены устройства первого типа, реагирующие на температуру выше заданной отметки. Модели срабатывали при разрыве электрической цепи, происходящего из-за вытекания легкоплавкого материала из предохранителя. После этого передавалось сообщение о пожаре. Такие извещатели были одноразовыми, так как первый же аварийный случай портил их навсегда. Сейчас выпускаются более продвинутые виды, в которых плавкие элементы могут быть заменены после их использования. Возможны и другие принципы работы подобных устройств.

Второй тип - это интегральные извещатели. Они измеряют скорость, с которой меняется электрическое сопротивление металла, когда он нагревается. Источник питания подаёт постоянное напряжение на клеммы элемента контроля тепла. После этого через резистор и измерительное устройство протекает ток, величина которого зависима от подаваемого сопротивления. В обычных условиях его значение практически не меняется.


Но после начала пожара сопротивление датчика возрастает, с ним изменяется и сила тока. Когда её колебания превышают критическую величину, обычно установленную на пять градусов в секунду, в приёмный модуль подаётся сигнал о начале пожара. Лучше всего такие датчики обнаруживают возгорания углеродного топлива, нефтепродуктов, твёрдых пожароопасных материалов. Их устанавливают в различных промышленных зданиях, например, складах легковоспламеняющихся материалов или местах хранения горючих жидкостей.

Обнаружители пламени

Эти приборы способны среагировать на возникновение открытого огня, не сопровождённого задымлением. Они оснащены специальным фотоэлементом, реагирующим на определённый участок или целый диапазон спектра волн.

Такие устройства тоже не защищены от ложных срабатываний. Самые простые модели могут принять за пожар свет люминесцентных ламп, сварочной дуги и даже яркие лучи солнца. Кроме того, в их работе возможны электромагнитные помехи оптического спектра. Чтобы противостоять всему этому, можно использовать специальные фильтры. Датчики пламени очень редко применяются в жилых домах по причине их высокой стоимости. Их основная сфера применения - предприятия газовой и нефтяной промышленности.

Комбинированные вариации

Любые виды датчиков способны дать ложную тревогу, уловив сигнал, не свидетельствующий о начале возгорания. Поэтому наиболее надёжными считаются те, которые сочетают в себе сразу несколько уловителей различных данных. Чаще всего сочетаются датчики дыма и тепла, иногда они дополняются и функцией обнаружения пламени.

В таких устройствах имеются сразу оптический, тепловой и инфракрасный сенсоры. Обычно их можно настроить как на сигнализацию по превышению одного из параметров, так и на комбинированное действие, включающее в себя одновременное появление всех сигналов.

Существует и более продвинутая техника, дополнительно способная уловить появление угарного газа. Такие четырёхканальные извещатели обычно используются на промышленных предприятиях с повышенной степенью опасности.

Действия при пожаре

Пожарная сигнализация устроена таким образом, что после поступления сигнала о начале возгорания начинает реализоваться заранее разработанный план действий. Он состоит из следующих пунктов:

Схема подключения

Чтобы максимально обезопасить людей в случае возгорания, схема подключения пожарной сигнализации должна быть составлена правильно. При помощи неё можно создать охранную систему, которая будет безопасной и эффективной. Как правило, она должна быть приложена к комплекту устройств сигнализации. Ей нужно чётко следовать, соблюдая даже мелкие детали эксплуатации оборудования. Правильная схема отвечает на следующие вопросы :

  • даёт информацию о том, как воспроизвести схему;
  • содержит состав компонентов системы и данные об особенностях их функционирования.

Используя её, можно не только корректно установить все элементы, но и успешно доработать или починить сигнализацию в случае необходимости. Правильно составленная схема сигнализации позволит сохранить здоровье людей и избежать материальных потерь.

Монтаж пожарных извещателей, безусловно подразумевает их соединение в шлейф пожарной сигнализации. Схема подключения пожарных извещателей приводится ниже. Рассматриваются двухпроводные (наиболее часто используемые)

  • извещатели пожарные дымовые (ДИП),
  • извещатели пожарные тепловые (ИП),
  • извещатели пожарные ручные (ИПР).

Схема подключения охранных извещателей приведена на другой странице.

Шлейф пожарной сигнализации может одновременно содержать извещатели одного или нескольких (комбинированный шлейф сигнализации) указанных типов. Кроме того, схема подключения пожарных извещателей может предусматривать срабатывание приемно контрольного прибора пожарной сигнализации (формирование извещения "пожар") при срабатывании только одного датчика шлейфа пожарной сигнализации или при срабатывании двух и более пожарных извещателей. (такая организация шлейфа пожарной сигнализации после срабатывания одного извещателя формирует сигнал "внимание").

Адресные пожарные извещатели также имеют свою схему подключения. Хочу заметить- схема подключения датчиков пожарной сигнализации может варьироваться (зависит от типа приемно контрольного прибора), однако, различия незначительны, главным образом затрагивают номиналы (значения) дополнительных (балластных), оконечных (выносных) резисторов.

Кроме того, различные типы приемно контрольных приборов допускают подключение различного максимального количества дымовых пожарных извещателей в один шлейф сигнализации- эта величина обуславливается суммарным током потребления датчиков. Помните- ток потребления дымового извещателя зависит от его типа.

Все типы неадресных дымовых двухпроводных извещателей используют одинаковую нумерацию выводов:(1,2,3,4).

Схемы подключения выводов дымовых извещателей различных производителей визуально могут несколько отличаться (варианты 1,2), но, с точки зрения электрики, являются идентичными, ибо внутри корпуса извещателя выводы 3,4- короткозамкнуты.

Однако, второй вариант имеет серьезный недостаток - при извлечении извещателя из розетки приемно - контрольный прибор не обнаружит его отсутствия и не сформирует сигнал "неисправность". Поэтому лучше его не использовать.

Обратите внимание!

  • Даже для одного конкретного типа приемно контрольного прибора пожарной сигнализации резисторы Rдоп. могут иметь различные значения (определяется током потребления различных типов дымовых извещателей, читайте паспорт прибора внимательно).
  • Приведенная схема подключения пожарного ручного извещателя справедлива когда его исполнительным элементом являются нормально замкнутые электрические контакты. Например, для ИПР 3 СУ эта схема подключения не подойдет.
  • Тепловые пожарные извещатели подключаются по приведенной схеме если имеют нормально замкнутые контакты (таких большинство).
  • Может возникнуть ситуация, когда ИПР, подключенный по приведенной (рекомендованной паспортом прибора) схеме для шлейфа сигнализации, предусматривающего сработку по двум датчикам, срабатывая вызывает формирование приемно контрольным прибором сигнала "внимание" вместо "пожар". Попробуйте тогда уменьшить номинал резистора (Rдоп), через который этот ИПР подключается в шлейф сигнализации.
  • Перед подключением (установкой) адресных извещателей, их адрес должен быть предварительно запрограммирован.
  • Подключение дымовых пожарных извещателей требует соблюдения полярности шлейфа сигнализации .

Для начала давайте рассмотрим общую схему соединений охранной сигнализации.

Она приведена на рис. 1 и включает:

  • приемно контрольный прибор -ПКП;
  • извещатели (датчики) - ИО;
  • устройства звукового и светового оповещения - ОП;
  • блок питания - БП.

Определенные модели ПКП имеют встроенный блок питания с возможностью подключения извещателей. Для небольшого количества датчиков мощности бывает достаточно. На схеме приемо контрольного прибора эти точки обозначаются как выход "плюс" и "минус" или "общий" напряжения 12 Вольт.

Обратите внимание - ПКП является центральной частью сигнализации, что, собственно, определяется назначением и принципом работы системы.

Приведенный пример иллюстрирует взаимосвязь оборудования системы безопасности, конкретные схемы подключения технических средств приводятся в документации предприятий изготовителей. Однако, для различных типов датчиков и приборов есть много общего, поэтому соединить их между собой можно не пользуясь специальными инструкциями и описаниями.

ПОДКЛЮЧЕНИЕ ОХРАННОЙ СИГНАЛИЗАЦИИ

Рассмотрим как подключить охранную сигнализация на примере наиболее распространенных типов оборудования.

Приемно- контрольный прибор.

Это устройство в обязательном порядке имеет клеммы, обозначенные как "ШС" - шлейф сигнализации. В зависимости от его типа при подключении может учитываться полярность "+", "-". Это нужно при использовании адресных устройств или извещателей, получающих питание по шлейфу. Для обычных датчиков это не принципиально.

Кроме того, к ПКП подключаются:

  • оповещатели,
  • системы передачи извещений (СПИ) - клеммы ПЦН.

* * *

© 2014 - 2020 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

E412RL База 4-х проводная, 12В для извещателей серии ЕСО1000 — Извещатели пожарные

База 4-х проводная, 12В, н.з.,н.о.

Общая характеристика

  • Базовое основание E412RL предназначено для подключения пожарных извещателей серии ECO1000 к шлейфу сигнализации по 4-х проводной схеме с использованием релейного модуля EOLR-1 в качестве оконечного элемента
  • База E412RL рассчитана на номинальное напряжение 12В
  • Выходной сигнал "Пожар" формируется переключением контактов реле. Возможно использование либо нормально замкнутых, либо нормально разомкнутых контактов
  • Предусмотрена возможность проверки правильности монтажа шлейфа до установки извещателя
  • Имеются контакты для подключения выносного оптического сигнализатора (ВОС), например типа RA400Z
  • Возможна механическая блокировка извещателя в базовом основании, затрудняющая несанкционированное снятие и обеспечивающая надежное крепление извещателя в условиях транспортной тряски при установке на подвижных объектах.

Описание

Базовое основание E412RL предназначено для подключения извещателей ECO1000 к приемно-контрольным приборам пожарных и охранно-пожарных систем (ПКП) по 4-х проводной схеме, с раздельными сигнальными цепями и питания, или по 2-х проводной схеме. Формирование выходного сигнала производится переключением контактов реле в соответствии с изменением режима извещателя. Управляется реле непосредственно током потребления извещателя. Базовое основание Е412RL не имеет функции автоматического сброса режима «Пожар» извещателя. База E412RL рассчитана на номинальное напряжение 12В.

Между выводами базы 1 и 2 установлен подпружиненный контакт обеспечивающий разрыв шлейфа при снятии извещателя, фиксирующийся в замкнутом и разомкнутом состояниях. Замыкание этих контактов в установленных и подключенных базах позволяет проверить (прозвонить) шлейфы сигнализации до установки извещателей. Размыкание контактов 1, 2 происходит автоматически при установке извещателя.

В базом основании E412RL установлены удобные невыпадающие винтовые контакты для подключения шлейфа и выносного оптического сигнализатора, например типа RA400Z. Все базы поставляются с винтами, зафиксированными в максимально открученном положении. Винты имеют универсальные шлицы. Винтовые контакты базового основания допускают подключение проводников с максимальным сечением не более 2,5 мм2, а выходные контакты реле - одножильных проводников сечением не более 1,5 мм2, а многожильных - не более 1 мм2.

Контакты реле выведены на отдельную колодку.

База E412RL позволяет защитить извещатель от несанкционированного извлечения и обеспечивает надежное крепление в условиях транспортной тряски при установке на подвижных объектах. После активизации функции защиты извещатель может быть снят только с использованием инструмента в соответствии с инструкцией.

Чертежи баз с установочными размерами

Базы Е412RL и E412NL имеют диаметр 102 мм и установочные размеры между центрами от 50 до 60 мм.

Технические характеристики E412RL

Напряжение питания  

9,5-15В

Ток в дежурном режиме (без тока извещателя)  

1 мкА

Ток ВОС  

4,5 мА

Сопротивление замкнутых контактов, не более  

0,1 Ом

Максиальный ток контактов реле  

1 А, при 30В

Диаметр базы  

102 мм

Высота базы  

21 мм

Вес базы, не более  

70 г

Диапазон рабочих температур  

-30°C +70°C

Допустимая относительная влажность  

95 %

Схема подключения баз Е412RL, E412NL к охранно-пожарным ПКП по 4-х проводной схеме с раздельными цепями питания и сигнала.

Пример подключения баз E412RL по 4-х проводной схеме к контрольной панеле VISTA-501

Контакты релейного модуля EOLR-1 показаны при включенном напряжении питания.

2EOL/NC - почему мы подключаем извещатели именно таким образом?

Зачем мы усложняем себе жизнь, изобретая резисторы в детекторах? Система будет работать и без него, подключив извещатель по схеме типа «NC». И почему производители выпускают извещатели с контактами «НЗ» (нормально замкнутые), а не «НО» (нормально разомкнутые)? Ведь "НЕТ" более естественно. Если у вас есть сомнения по поводу приведенных выше вопросов, я рекомендую вам прочитать его.

Соединения извещателя NC вместо NO - почему такое условное обозначение?

Normal Open, или "NO" означает, что тревожные контакты извещателя нормально разомкнуты (разомкнуты).Когда извещатель фиксирует движение, контакты замыкаются (замыкаются). Это кажется очевидным и желательным. Движения нет, поэтому контакты размыкаются, а затем происходит движение, поэтому контакты замыкаются. Ситуация аналогична классической кнопке звонка, установленной в частных домах.

Однако мир пошел по другому пути, и мудрые люди сделали это в тревоге… наоборот. Большинство производителей охранных устройств (в основном извещателей) используют в своих решениях контакты типа «НЗ» (нормально замкнутые).Ситуация здесь следующая: когда датчик не видит движения (нормальное состояние), контакты датчика замкнуты. Однако, когда извещатель видит движение, контакты размыкаются (происходит обрыв). Вы можете видеть, что это ситуация, противоположная описанной ранее.

Рис. 1. Подключение контактов сигнализации извещателя по схеме «НЗ».

Вы спросите себя: зачем такое усложнение? Из электрических решений мы узнали, что цепь замыкается, когда пользователь выполняет действие (например,кнопка нажата). Здесь, «назло», дело обстоит наоборот. Однако не злонамеренность производителей заставила нас иметь дело с NC-контактами вместо NO-контактов. Размыкающие контакты являются огромным преимуществом, которое повышает безопасность установки за счет введения «непроизвольного» контроля целостности проводки.

Вы также можете интерпретировать это следующим образом:
Если между извещателем и контрольной панелью протекает ток, это означает, что между этими устройствами имеется хорошее электрическое соединение (поскольку ток течет).Пока ток есть - все ок.Если ток перестает течь (размыкаются контакты в извещателе) это значит для ПКП, что извещатель что-то увидел. Если бы мы остались с условным обозначением «НО», отсутствие протекания тока было бы нормальным состоянием (потому что нормально разомкнутые нормально разомкнутые контакты), поэтому отсутствие кабеля также было бы нормальным (без кабеля ток также не протекает: )

Мы уже знаем, что вариант подключения извещателя «NC» более практичен, чем вариант «NO». Однако это все еще не то, как мы сегодня подключаем извещатели к ПКП (такие ситуации, конечно, есть, но их немного).

Неисправность соединения НЗ?

Как видно на схеме выше (рис. 1), в извещателе показана только пара размыкающих контактов сигнализации (размыкающие, размыкающие клеммы). Большинство извещателей, предназначенных для сигнализации, имеют вторую пару контактов, помеченных, например, как ТМР, ТМР (или Т, Т и т. д.). Это контакты саботажного терминала (контроль вскрытия корпуса, возможно отрыва от стены), которые также необходимо подключить к ПКП (ведь мы хотим иметь контроль над данным элементом и в случае его вскрытия посторонним лицом - узнать об этом).Целевое соединение NC может быть следующим:

Рис.2. Подключение тревожной и тамперной клемм извещателя как НЗ

Проблема №1 заключается в том, что извещатель занимает две зоны ПКП . В этом нет никакой экономии, так как мы должны стремиться к тому, чтобы один датчик занимал только один вход (это идеальная ситуация, которую мы обычно можем достичь). К сожалению, при таком подключении (рис. 2) мы теряем много зон ПКП (например, 5 извещателей должны занимать 10 зон ПКП).

Проблема №2 , не менее важным (и даже более важным) является тот факт, что такую ​​зону ПКП (запрограммированную как "NC") можно легко обмануть (замкнув в любом месте кабеля). Поэтому, как вы, наверное, уже догадались, наше подключение должно быть немного усложнено (добавляем резистор).

EOL - т.е. параметризация линии сигнализации

Следующая схема подключения (вариант) включает в себя вставку резистора в линию. Резистор в конфигурации "EOL" должен располагаться со стороны оконечного элемента, т.е. со стороны извещателя .Собственно, об этом нам и говорит название линии — EOL, т.е. End of Line (конец строки). Схема подключения сигнального контакта как «EOL» показана на рисунке 3.

Рис. 3. Подключение извещателя в качестве EOL.

На рис. 3 показан ток, протекающий между извещателем и контрольной панелью, когда на пути установлен резистор (резистор - здесь именно 2,2 кОм). В ситуации, когда извещатель не фиксирует движение, контакты NC NC замыкаются и протекает ток. Контрольная панель знает, что по пути на линии должно быть падение напряжения, которое только что было вызвано установкой резистора [знает, потому что вход запрограммирован как «EOL»].Однако, когда извещатель обнаруживает движение, контакты сигнализации NC/NC размыкаются, и ток прекращается.

Отличие от NC в том, что ПКП должен видеть резистор в EOL в нормальном состоянии. Пока ток проходит через резистор, все в порядке, отсутствие тока или отсутствие тока через резистор вызывает нарушение входа ПКП.

Чтобы лучше проиллюстрировать это, см. рис. 4, где мы намеренно сократили линию.

Рис. 4. Короткое замыкание в линии вызывает изменение эквивалентного сопротивления линии (ток шунтирует резистор).

Случайное или преднамеренное короткое замыкание в линии приводит к падению тока (перемычка имеет очень низкое сопротивление по сравнению с резистором 2,2 кОм). Прибор отмечает, что на этот раз сопротивление равно 0 Ом (короткое замыкание) и сигнализирует об этом как о нарушении. Если бы это было размыкающее соединение, ПКП не заметил бы такого короткого замыкания! (ведь КЗ в линии НЗ - нормальное состояние).

Мы уже знаем, что EOL просто лучше, чем NC.Однако наша схема (рис. 3 и 4) по-прежнему включает в себя подключение только контакта сигнализации (размыкающие контакты). Для полноценного подключения извещателя нам еще предстоит учесть его клеммы тамперных контактов (ТМП, ТМП). В этом случае нам необходимо выделить на такую ​​цепь еще один вход «Z» ПКП. Так что подключение у нас все же не очень экономичное, т.к. один извещатель занимает две зоны контрольной панели. Если мы хотим его изменить, пришло время увидеть тип линии 2EOL/NC.

2EOL/NC — решение для нашего извещателя

Многие установщики используют имя "DEOL", что по сути означает то же самое (" Двойной конец строки ").Ставим два резистора в детектор. На этот раз на одной линии (одной зоне ПКП, например, "Z1") мы обрабатываем все необходимые сигналы от извещателя (т.е. сигнал тревоги и саботажа корпуса). На схеме на рисунке 5 показано:

Рис. 5. 2EOL/NC подключение - по умолчанию ток протекает через один резистор (NC и NC контакты замкнуты).

Прежде всего отметим, что в этот раз использовались 2 резистора по 1,1 кОм каждый. Анализируя диаграмму выше, ситуация выглядит следующим образом:

  • в нормальном состоянии , т.е.при извещатель не видит движения [НЗ контакты НЗ замкнуты], ток протекает только через один резистор номиналом 1,1 кОм, поэтому эквивалентное сопротивление этой цепи 1,1 кОм
  • в тревога , т.е. когда датчик пилит движение [NC NC контакты разомкнуты], через оба резистора течет ток, поэтому эквивалентное сопротивление этой цепи 2,2 кОм (величину сопротивления последовательно соединенных резисторов надо сложить )
  • в саботажном состоянии , т.е.когда кто-то открывает корпус [контакты ТМП ТМП размыкаются], ток перестает течь и ПКП трактует это как саботаж линии - срабатывает тревога саботажа

Извещатель, подключенный в конфигурации 2EOL/NC, может генерировать 3 состояния: нормальное, нарушение (тревога) и тампер. Как описано выше. Помните, однако, что саботаж также может быть вызван замыканием линии (аналогично рис. 4) или простым перерезанием провода (тогда ток также перестанет течь).

Резюме

С учетом отраслевых стандартов, а именно PN-EN 50131-1 (Системы охранной сигнализации. Требования к системе), для каждого класса от 1 до 4 (класс 1…4) необходимо использовать обработку сигналов о саботаже устройства . Это означает, в том числе, что мы должны подключить контакты извещателя TMP TMP к цепи, управляемой ПКП. Подключать ли их как NC, EOL или в конфигурации 2EOL — решать установщику (стандарт не определяет такие термины, как, например, EOL, 2EOL, но другие положения косвенно говорят о том, что уровень сложности установки увеличивается с повышением уровня безопасности).

В целях безопасности и экономичности стоит использовать конфигурацию «двойной EOL» (2EOL/NC). Тогда одна зона пульта комплексно заботится о нашем извещателе - но внимание - не только датчик движения . Это вопрос, который требует некоторого комментария.

Большинство извещателей, используемых в системах охранной сигнализации, имеют тревожный контакт (обозначенный, например, как NC NC) и контакт тампера (например, TMP TMP) — хотя эти названия могут немного различаться у разных производителей. Подключение извещателя в конфигурации 2EOL/NC распространяется и на извещатели дыма, разбития стекла, затопления, газа и т.д.

Дополнительно некоторые извещатели (например, извещатель дыма ТСД-1, извещатели серии SLIM Line) имеют встроенные резисторы (свои добавлять не нужно, т.к. они несъемно припаяны к ламинату). Наконец, не менее важный вопрос: резисторы 1,1 кОм и 2,2 кОм — номиналы, принятые производителем Satel (в некоторых устройствах Satellite есть возможность программно изменить значение требуемого сопротивления линии с помощью пульта управления). Эти значения могут отличаться у другого производителя: например, в пультах управления DSC при подключении извещателя как 2EOL/NC (DEOL) - используйте 2 резистора номиналами 5.6 хом . Однако принцип работы остается прежним.

Помните, что на некоторых контрольных панелях предусмотрена возможность подключения извещателя как 3EOL/NC (TEOL - Triple end of line). Используется для извещателей с функцией антимаскирования. см. статью: Детектор антимаскирования - Схемы подключения, настройки.

.

Правильный выбор и установка пожарных извещателей в системах пожарной сигнализации (ССП) 9000 1 Добавить Автора Детектор пожара. Раннее обнаружение возгорания оказывает большое влияние на эффективность применяемых решений.

С точки зрения противопожарной защиты система противопожарной защиты здания может быть ограничена использованием простых средств пожаротушения или огнетушителей.Однако может потребоваться реализация более сложной системы, объединяющей множество устройств, таких как системы пожарной сигнализации, системы звукового оповещения, системы дымоудаления или предотвращения дыма, а также стационарные устройства пожаротушения.

Пожарные извещатели в системах безопасности

Чтобы гарантировать надлежащее функционирование систем безопасности, необходимо учитывать задачи, которые должно выполнять оборудование пожарной сигнализации.При выборе системы пожарной сигнализации, варианта сигнализации и пожарных извещателей , пожарных извещателей необходимо учитывать возможные сценарии развития пожара в начальной стадии, высоту помещения или условия окружающей среды в защищаемом помещении.
В статье представлены принципы выбора пожарных извещателей с учетом их расположения и различных условий в охраняемых помещениях. Также будут рассмотрены наиболее распространенные ошибки и их влияние на эффективность систем пожарной сигнализации.

Средства пожаротушения и эвакуации на промышленных объектах

Выбор пожарных извещателей - правила пожарной безопасности

Необходимость использования систем пожарной сигнализации в Польше для отдельных зданий вытекает из Постановления министра внутренних дел и администрации от 7 июня 2010 г. о противопожарной защите зданий, других сооружений и территорий (Законодательный вестник № 109, поз.719 с поправками изменения). В нем указан 21 объект (в основном коммунального назначения), в том числе: торговые или выставочные объекты с определенной площадью пожарной зоны (одноэтажные - 5000 м², многоэтажные - 2500 м²), театры, кинотеатры, здания общественного питания, зрелищные и спортивные залы с определенным количеством мест, больницы, дома престарелых с соответствующим количеством коек, жилые дома и другие. В перечень не входят промышленные объекты — их противопожарная защита определяется требованиями страховых компаний.

Требования к проектируемым установкам обычно указываются в стандартах. В Польше они определены в технической спецификации 2006 PKN-CEN/TS 54-14 «Системы пожарной сигнализации. Часть 14: Руководство по планированию, проектированию, монтажу, вводу в эксплуатацию, эксплуатации и техническому обслуживанию». В странах Евросоюза еще нет европейского стандарта в этой сфере (он находится на стадии консультаций). При установке извещателей в потенциально взрывоопасных средах помните, что они должны иметь сертификат соответствия стандартам, гармонизированным с директивой ATEX.

Тип и технические характеристики извещателей

По параметру, используемому для пожарной сигнализации, извещатели можно разделить на извещатели тепла, дыма, пламени и газа.
Тепловой извещатель чувствителен к нестандартной температуре и/или повышению и колебаниям температуры. Он контролирует температуру в защищаемом помещении, реагируя на ее повышение. Тепловая энергия, образующаяся в результате процесса горения материала, передается конвекцией от источника огня к извещателю.
Существует два основных типа тепловых извещателей:

  • резервный - выдает сигнал пожарной тревоги при превышении температурой окружающего воздуха порогового значения (определяется в зависимости от типичных условий в защищаемом помещении) и остается на этом уровне в течение заданного периода времени;
  • дифференциал - вызывает пожарную тревогу, когда скорость изменения температуры во времени превышает определенное значение в течение достаточно длительного времени.

Извещатели резервные и дифференциальные нельзя использовать в местах превышения параметров, указанных производителем (рабочая температура, влажность, движение воздуха и т.д.), где имеется химически опасная атмосфера и влажная пыль. Устройства детектирования также не устанавливаются там, где температура окружающей среды изменяется в пределах дифференциального порога извещателя и имеет место сильное разнонаправленное движение воздуха. Чувствительным элементом в тепловых извещателях является термистор (полупроводниковый элемент), сопротивление которого зависит от температуры.Чаще всего он работает по мостовой схеме (рис.), где выходные напряжения со схемы сравниваются через компаратор.

Автор: В. Внек Схема принципов работы выбранных систем тепловых извещателей [1]: а) резервная система, б) дифференциальная система

Другими решениями являются линейные тепловые извещатели, использующие технологию термочувствительных (сенсорных) кабелей или оптических волокон.Детекторы дыма являются наиболее часто используемыми линейными элементами в системах пожарной сигнализации. В основном это связано с тем, что при большинстве пожаров задымление является первичным параметром, а увеличение других скоростей пожаров происходит на более поздней стадии развития. Эти устройства чувствительны к твердым или жидким продуктам горения и/или пиролиза. С учетом явлений, используемых при обнаружении, они были разделены на:

  • ионизационный - чувствителен к продуктам сгорания, влияющим на ионизационный ток, протекающий через его ионизационную камеру.Принцип их работы основан на явлениях, происходящих в камерах. Устройства состоят как минимум из одной ионизационной камеры (известной как рабочая или внешняя измерительная камера) с доступом воздуха, одного или нескольких источников изотопного излучения для получения определенной концентрации ионов и электрической системы сигнализации. Появление частиц дыма в камере нарушает протекание ионного тока. Это явление основано на захвате электронов частицами дыма, что напрямую снижает силу тока ионизации.При превышении его значения детектор срабатывает. Помимо внутренних факторов, на величину тока ионизации влияют и внешние факторы, такие как изменения атмосферного давления, температуры, влажности и движения воздуха. Большая часть их помех была ограничена использованием двухкамерной системы обнаружения;
  • оптические (фотоэлектрические) - чувствительные к продуктам горения, способные влиять на поглощение или рассеяние излучения в инфракрасном, видимом и/или ультрафиолетовом диапазоне электромагнитного спектра.Принцип его работы основан на использовании явления поглощения (поглощения) и рассеивания (рассеяния) света. Основным элементом этих детекторов является фотоэлемент, принимающий свет от излучателя. Излучаемый свет встречается с мелкими частицами дыма, что приводит к рассеянию, отражению, преломлению или поглощению светового луча. Например, путем измерения степени поглощения света можно определить плотность дыма. Здесь следует обратить внимание на внешний вид обнаруживаемого дыма, особенно на его цвет;
Автор: В.Перерыв Принципиальная схема принципа действия системы обнаружения рассеянного оптического дымового извещателя
  • для поглощенного света - использует явление поглощения света, т.е. модуляцию потока излучения частицами дыма, часть которых не достигает приемника. Таким образом, снижается энергия излучения, достигающего передатчика, что фиксируется системой сигнализации извещателя.

Одними из самых чувствительных устройств обнаружения дыма являются аспирационные системы .Общий принцип их работы основан на подсасывании воздуха из защищаемой кубатуры и, таким образом, анализе его состава детекторным элементом (в простых решениях - дымовым извещателем). После превышения заданного порога срабатывания извещателя в ПКП включается оптическая и акустическая сигнализация. Более высокая чувствительность элементов обнаружения достигается в аспирационных системах с использованием лазерной техники. Система может иметь несколько программируемых порогов срабатывания сигнализации, охватывающих уровень задымленности в диапазоне от 0,005 до 20%/м.

Автор: В. Внек Система обнаружения дыма на всасывании (с оптическим дымовым извещателем) Реальный датчик присутствия для управления зданием, но не только. Первый ...

Детектор пламени реагирует на излучение (инфракрасное и ультрафиолетовое или многоцветное), испускаемое пламенем - наиболее видимой формой горения горючих материалов.Устройство работает за счет выбора частоты мерцания пламени. Мерцающий свет через широкоугольную оптическую систему передается на фотоэлемент, где преобразуется в электрический сигнал с частотой мерцания пламени (3–20 Гц). Тело, подвергающееся горению пламенем, испускает электромагнитное излучение с определенным спектральным распределением. Наиболее распространенными извещателями пламени на рынке являются те, которые используют электромагнитное излучение в инфракрасном и ультрафиолетовом диапазоне длин волн.

Автор: В. Внек Схема работы извещателя пламени, работающего в инфракрасном диапазоне

При установке извещателей пламени необходимо исключить влияние побочных ситуаций, имитирующих явления, происходящие при пожаре. Поэтому элементы детектирования не следует устанавливать в помещениях, подверженных, например, воздействию солнечного света, модулированного движущимися деревьями, ультрафиолетового излучения, образующегося при дуговой сварке, или появления пламени, используемого в защищаемом технологическом процессе.Эти препятствия можно ограничить, например, специальными кожухами и соответствующим подбором параметров системы дискриминации нежелательных частот, и даже отключением детекторов во время ремонтных работ. Для более требовательных процессов следует использовать многоцветные датчики пламени (даже трехцветные).
Так называемый многодетекторные детекторы. В их конструкции используются датчики тепла и дыма, датчики пламени и дыма, а также датчики угарного газа и дыма.Каждый раз дымовой извещатель представляет собой оптическую версию с инфракрасным рассеянием.

Критерии выбора пожарного извещателя

Основными критериями выбора пожарного извещателя являются: вероятность развития пожара на начальной стадии, высота помещения и условия окружающей среды.

  • Предполагаемый сценарий пожара на начальной стадии может быть определен с учетом скорости его распространения. При низкой скорости горения (беспламенных) решающим фактором при выборе извещателя является большое количество дыма.В этом случае основным элементом обнаружения является оптический диффузный дымовой извещатель.

При пожарах с высокой скоростью горения (пламени) практически одновременно присутствуют тепло, пламя и дым. Тот факт, что факторы равны, очень затрудняет выбор подходящего детектора. Пластмасса, дерево или легковоспламеняющаяся жидкость горят по-разному. В этом случае необходимо решить, какой параметр является доминирующим, и использовать ионизационные или многодетекторные детекторы.
Другим важным фактором является высота помещения, которая влияет на время, необходимое для того, чтобы параметр огня достиг извещателя.
В случае задымления создается конвекционная колонна, которая поднимает дым, который затем растворяется, образуя дымовую подушку на высоте 11 м. Таким образом, определена максимальная высота установки точечных дымовых извещателей. Линейные извещатели могут быть установлены на высоте 25 м от т.н. промежуточный уровень, расположенный на высоте, такой как точечные детекторы. С другой стороны, тепловые извещатели устанавливаются на высоте не более 8 м.Однако следует помнить, что эта высота относится только к тепловым извещателям класса А1, а остальные имеют максимальную высоту установки 6 м. Высота установки извещателей пламени зависит от используемого в них конструктивного решения. Приборы с I классом чувствительности обнаруживают пробное пламя с расстояния более 25 м.

Параметры, влияющие на выбор пожарных извещателей

Температура - для пожарных дымовых извещателей температура испытания на чувствительность согласно PN-EN 54-7 составляет от -10 до 55ºC.Однако из-за переменчивого климата в Польше производители устанавливают значение параметра в диапазоне от -25 до 55ºC. Изменения температуры в помещении влияют на порог срабатывания дифференциальных тепловых извещателей, что может привести к их ложному срабатыванию. В этом случае их следует заменить резервными тепловыми извещателями.

Влажность (до 95% при 40ºC)
- влияет на величину силы тока ионизации в дымовых ионизационных извещателях, которая, однако, ограничена использованием двухкамерной системы обнаружения (внешняя и внутренняя камера) .В настоящее время большее значение имеет явление обрастания элементов системы обнаружения или самой электроники. Для их ограничения следует, в частности, лакируйте электронные платы извещателей или используйте нагреватели, чтобы уменьшить возможность оседания воды на элементах извещателей.

Давление
- в случае детекторов ионизации влияет на значение тока ионизации. Однако это явление было уменьшено, как и в случае с влажностью, благодаря использованию двух камер.Другие детекторы не чувствительны к давлению.

Движение воздуха
- со скоростью, превышающей 5 м/с, вызывает увеличение количества извещателей в помещении (согласно техническому заданию ПКН). Важно влияние скорости на сам дым - разбавление и изменение размера частиц дыма увеличивают время работы пожарных извещателей.

Во время теста выбранные устройства были установлены в ветрозащитных экранах, чтобы исключить влияние скорости воздушного потока на время срабатывания извещателя.Для пламенного горения в щите есть ионизационная модель, а для беспламенного - инфракрасное оптическое рассеяние. В случае пламенного горения оптический датчик не срабатывал, но срабатывал ионизационный датчик в тоннеле и лобовом стекле. Экранированное устройство запускалось с задержкой при скорости воздуха 3 м/с. Все детекторы активировались при беспламенном горении. В лобовом стекле срабатывание оптики по-прежнему происходило с временной задержкой по сравнению с таковой без защиты при скорости потока 2,5 м/с.Детектор ионизации выходил из строя до скорости 1,5 м/с. Время оптической реакции достигает таких же значений в испытанном диапазоне скорости потока воздушно-дымовой смеси. Измерения показывают, что:

  • На время срабатывания дымовых извещателей влияют параметры летучих продуктов сгорания - в области беспламенного горения материалов, оптические свойства дыма, а в области пламенно-ионизационных камер. Поэтому для пламенного горения следует применять ионизационные и многодетекторные извещатели, а для пламенного горения — оптические;
  • при использовании ветровых стекол в системах безопасности необходимо учитывать минимальную скорость воздушного потока, обуславливающую проникновение продуктов разложения и горения внутрь кожухов.

При выборе извещателей также стоит учитывать способ сжигания (на первой стадии развития пожара) материала, скопившегося в защищаемом помещении (например, кабели горят без пламени, а жидкости горят пламенем). Также важно, может ли произойти поджог или пожар, или - при возможном поджоге - например, воспламенение.

Удары (вибрация)
- может повлиять на срок службы компонентов обнаружения. Поэтому следует применять превентивные меры, снижающие влияние этого фактора на извещатели.Особенно важно обеспечить безопасность устройств во время транспортировки.

Оптическое излучение
- относится к датчикам пламени. При их установке необходимо следить за тем, чтобы на элемент не влияли побочные эффекты, имитирующие процессы, происходящие при пожаре. Детекторы пламени не следует устанавливать в помещениях, где могут возникать: эффект мерцающего света с соответствующей частотой, солнечный свет, модулированный движущимися деревьями, ультрафиолетовое излучение, образующееся при дуговой сварке и т.п.Этих препятствий можно избежать, например, благодаря специальным кожухам, соответствующему подбору параметров системы дискриминации нежелательных частот или отключению устройства на время ремонтных работ.

Дым, аэрозоли и пыль
- Детекторы дыма воспринимают их как дым. Поэтому следует обратить внимание на возможность попадания в защищаемое помещение паров воды от кухонных приборов, пыли (например, древесной) и испаряющихся веществ, имитирующих дым.Если эти факторы присутствуют, следует использовать другой метод обнаружения пожара. Наиболее часто используемыми извещателями являются тепловые или многодетекторные извещатели с возможностью активации как минимум двух извещателей, например, тепла и дыма. В первом случае необходимо учитывать осаждение пыли, что может привести к увеличению времени работы устройства.

Расположение извещателей - самые распространенные ошибки

В настоящее время повышается уровень проектирования систем пожарной сигнализации.На это в значительной степени влияет растущая осведомленность дизайнеров, которые участвуют во многих курсах, тренингах и аспирантуре. Увеличилось также количество курсов по обучению оборудованию, проводимых компаниями, поставляющими на польский рынок системы пожарной сигнализации.
Ошибки чаще всего возникают из-за незнания проектировщиками окончательного оснащения помещений приборами и изменениями, внесенными на этапе реализации инвестиций. Анализ оценок эффективности систем противопожарной защиты указывает на несколько факторов, влияющих на правильное расположение извещателей.
Высота установки пожарных извещателей. Техническая спецификация PKN-CEN/TS 54-14 определяет максимальную высоту установки этих устройств.

Автор: В. Внек Граничные лучи работы пожарного извещателя

Отсутствие регулировки этих высот приводит к неприемлемо долгому времени отклика извещателей на параметры пожара.Для тепловых извещателей классов от А2 до G максимальная высота составляет 6 м. Однако она не всегда соблюдается, особенно в производственных цехах. Иногда возможна замена извещателей класса А1 на А2 в процессе эксплуатации, что влияет на время их работы (температурный диапазон приборов аналогичен, отличаются они только максимальной высотой, на которой они могут быть установлены). Для линейных извещателей с радиусом действия 11–25 м спецификация требует их дополнительного использования на промежуточном уровне в середине помещения.При высоте, например, 18 м первый уровень на 9 м не используется, а на 11 м, как и у точечных устройств. В случае систем противопожарной защиты в помещениях высотой более 6 м следует помнить о наличии там воздушной подушки, которая затрудняет доступ дыма к элементам обнаружения на первой стадии развития пожара. В этом случае датчики дыма должны быть установлены на расстоянии от надлежащего потолка, которое составляет 5% от высоты помещения (H).
Ассоциация пожарных инженеров и техников ужесточила требования к линейным извещателям, уменьшив радиус их действия.Применяемые расстояния вытекают из детального анализа распространения дыма в защищаемых помещениях (теория формирования конвекционного столба).

Влияние установки вентиляции помещения.
При размещении извещателей в проветриваемом помещении необходимо провести анализ влияния воздушных потоков на извещатели, установленные на потолке. Неправильное размещение дымовых извещателей по отношению к каналам вентиляции и кондиционирования воздуха может привести к затруднению доступа дыма к этим элементам через воздух, поступающий из вентиляционной системы.В установке с истечением воздуха в помещение минимальное расстояние от проемов принимается 1,5 м, а для вытяжной установки - 0,5 м. При их несоблюдении продлевается время работы охранной системы.

Расположение пожарных извещателей относительно различных элементов оборудования стационарных помещений.
В основном это связано с расстоянием между извещателями и стенами, перегородками или конструкциями (например, переплетами). Извещатели (кроме извещателей дымовых линейных оптических) должны устанавливаться на расстоянии не менее 0,5 м от стен или перегородок (перегородок).В интерьерах, разделенных стенами, перегородками или полками, достигающими не более 30 см от потолка, перегородки следует рассматривать как примыкающие к потолку, а образовавшиеся части - как отдельные помещения. Вокруг элемента детектирования должно быть обеспечено свободное пространство с радиусом сферы не менее 0,5 м. Также следует обратить внимание на высоту лучей, которые могут разделить помещение на две части независимо от высоты помещения при h ≥ 10% H .
Часто под потолком подвешивают различные монтажные элементы и вентиляционные каналы, которые могут разделить потолочное поле на части.Зазор между потолком и воздуховодом (менее 25 см) следует рассматривать как препятствие, из-за чего необходимо отодвинуть извещатель дальше, чем на 0,5 м. В противном случае его можно поставить ближе.

Установка детекторов дыма на стене помещения.
Затрудняет или даже делает невозможным доступ дыма к извещателю. В гостиничных номерах такие решения предлагаются для элементов спринклерной системы, где решающим фактором является тепло. Эти типы устройств также не должны быть размещены слишком низко.Также ошибкой является установка в помещении неподходящего извещателя (например, извещателя дыма на кухне). Из-за возможности образования водяного пара или дыма целесообразно использовать, например, тепловые извещатели, а не извещатели дыма.

Последствия неправильного выбора извещателя и его неправильного расположения

Основным следствием неправильного выбора и расстановки извещателей является увеличение времени срабатывания системы пожарной сигнализации или возникновение ложных срабатываний, вызванных вводящими в заблуждение факторами, возникающими в охраняемом помещении.Зачастую сам инвестор не следует общепринятым принципам работы данного типа установок. Бывает, например, в ресторане, в помещении, охраняемом датчиками дыма, выпекают различные продукты. Ремонтные работы также часто проводятся при наличии функционирующей системы безопасности. Проверка правильности принятых решений должна начинаться с подтверждения того, что установка произведена в соответствии с проектом. Затем в помещениях с разветвленной структурой (например, серверные, вентилируемые помещения с большим количеством обменов) проверку эффективности защиты следует проводить с помощью огневых испытаний.Для этого чаще всего сжигают пенополиуретан (3 мата размером 50/50 см и толщиной 2–3 см), либо используют генераторы теплого дыма. Все более популярным методом становится также анализ с использованием компьютерного программного обеспечения, например, FDS (симулятор динамики огня) с PyroSim, CFAST, DETACT-T2 и другими.
Диаграмма распространения дыма в определенные промежутки времени позволяет проверить, когда появится дым с определенной оптической плотностью и заданной температурой в заданное время. Также возможно изучение распределения воздушных потоков в помещении, что позволит оценить шансы попадания дыма на конкретные извещатели.Все эти действия должны привести систему пожарной сигнализации в состояние пожарной тревоги за заданное время - 180 секунд.

доктор инж. Вальдемар Внек, Главное училище пожарной службы, кафедра технических систем безопасности

Была ли эта статья интересной? Поделиться! .

% PDF-1.5 % 2 0 том > / Метаданные 5 0 R / StructTreeRoot 6 0 R >> эндообъект 5 0 том > поток 2020-01-19T15:39:07+01:002020-01-20T08:19:04+01:00Microsoft® Word 2013Microsoft® Word 2013приложение / pdf конечный поток эндообъект 53 0 том > поток х][о6~2"8/3мО.] К; @q4l + JmeCM: + c'Tl> k> nBBpq |)> G ~ qN crib7 # тО}] А;

Схемы подключения

схема подключения схема подключения схема подключения схема подключения
Схемы подключения — комплекты сигнализации
Общие инструкции - установка системы сигнализации es_io_msa.pdf Размер: 48,5 [КБ]
DT3K-MINI dtk3mini_sch.pdf Размер: 72,3 [КБ]
DT3-KL - схема подключения комплекта сигнализации dt3-kl_sch.pdf Размер: 82.4 [КБ]
DT3-MIX dt3mix_sch.pdf Размер: 82,4 [КБ]
Схема подключения комплекта DT3-MIX (извещатели на линии L2) dt3mix_l2_sch.pdf Размер: 82,7 [КБ]
DT3-MIX пошаговая инструкция dt3mix_kpk.pdf Размер: 72,3 [КБ]
Схема подключения комплекта DT3-PILOT dt3pilot_sch.pdf Размер: 77,5 [КБ]
Схема подключения комплекта DT3-PILOT (2 ИК-детектора) dt3pilot_2pir_sch.pdf Размер: 86,5 [КБ]
DT3-PILOT пошаговая инструкция dt3pilot_kpk.pdf Размер: 72 [КБ]
Схема подключения комплекта ДТ3К-ЭКО dt3keko_sch.pdf Размер: 79,4 [КБ]
Схема подключения комплекта DT3K-PLUS dt3kplus_sch.pdf Размер: 88 [КБ]
Схема подключения комплекта DT3K-PLUS (с энкодером SZW02) dt3kplus_szw_sch.pdf Размер: 99,4 [КБ]
Схема подключения комплекта DT3K-PLUS (с радиоуправлением) dt3kplus_umb_sch.pdf Размер: 98,6 [КБ]
DT3-PLUS пошаговая инструкция dt3kplus_kpk.pdf Размер: 72,1 [КБ]
DT3K-MINI пошаговая инструкция dt3kmini_kpk.pdf Размер: 71 [КБ]
DT3-KL-DG85 - схема подключения ПКП DT3 с извещателями DIGIGARD85 dt3kl_dg85_sch.pdf Размер: 85,2 [КБ]
Примерная схема подключения номеронабирателя DT1PLUS к ПКП DT3 dt3_dt1_sch.pdf Размер: 108,5 [КБ]
CA4MX Схема подключения для комплекта ca4mx_sch.pdf размер: 149,8 [КБ]
CA8MX Схема подключения для комплекта ca8mx_sch.pdf Размер: 191,4 [КБ]
CA8MX-MIX ca8mx-mix_sch.pdf Размер: 200,4 [КБ]
Схема подключения CA8MX-PILOT ca8mx-pilot_sch.pdf Размер: 200,3 [КБ]
CA8MX-MAGAZINE ca8mx_magazyn_sch.pdf Размер: 218,2 [КБ]
Схема подключения комплекта CA4v1 (детекторы AQUA) ca4v1_aqua_sch.pdf Размер: 239,4 [КБ]
Схема подключения комплекта CA4v1 (извещатели XP44T) ca4v1_xp44t_sch.pdf размер: 239.2 [КБ]
Схема подключения комплекта CA4v1 (5 извещателей XP44T) ca4v1_5xp44t_sch.pdf Размер: 265,4 [КБ]
Схема подключения комплекта CA5LED-S BOX ca5leds_sch.pdf Размер: 260,4 [КБ]
Схема подключения комплекта CA5LCD-BOX ca5lcd_sch.pdf Размер: 244,3 [КБ]
CA5LCD-EL100 - схема подключения комплекта (2 извещателя EL-100) ca5_2el100.pdf Размер: 217,7 [КБ]
CA5LCD-5PRO+ - пример подключения комплекта CA5LCD с извещателями PARADOX PRO+ ca5_5pro_sch.pdf Размер: 271,4 [КБ]
Схема подключения комплекта CA6LED BOX (6 извещателей) ca6led_sch.pdf размер: 313,7 [КБ]
Схема подключения комплекта CA6LED-M BOX (7 извещателей) ca6ledm_sch.pdf Размер: 338,2 [КБ]
Схема подключения комплекта CA6LED-S BOX (8 извещателей) ca6leds_sch.pdf Размер: 359,4 [КБ]
Схема подключения комплекта CA6LED-S2 BOX (2 клавиатуры) ca6leds2_sch.pdf размер: 337,8 [КБ]
Схема подключения комплекта CA10LCD-BOX ca10_aqua_sch.pdf Размер: 429.4 [КБ]
CA10-EL100 - Схема подключения системы CA10 с извещателями Mercury EL-100 ca10_el100_sch.pdf Размер: 427,6 [КБ]
CA10_11DG55 - Схема подключения системы CA10 с 11 извещателями DG55 и контроллером DWB100HS ca10_11dg55_dwb_sch.pdf Размер: 578,7 [КБ]
CB32 - схема подключения комплекта cb32_sch.pdf Размер: 50,7 [КБ]
Схемы подключения — подключение детекторов
Пример подключения 5 герконов на одну линию (конфигурация EOL) 5kontakt_eol.pdf Размер: 21,2 [КБ]
Пример подключения двух извещателей АКВА к одной линии (NC конфигурация) 2aqua_nc_sch.pdf Размер: 72,6 [КБ]
Пример подключения двух извещателей АКВА к одной линии (конфигурация EOL) 2aqua_eol_sch.pdf Размер: 73,2 [КБ]
Пример подключения двух извещателей AQUA к одной линии (конфигурация 2EOL/NC) 2aqua_2eol_sch.pdf Размер: 74,9 [КБ]
Схемы — учебные пособия по видеонаблюдению
Руководство по настройке подключаемого цифрового видеорегистратора сети через Интернет. DVR_net_v2.2.pdf размер: 352,2 [КБ]
Руководство по настройке просмотра изображения с IP-камеры/регистратора БКС по локальной сети. Net_IP_v2.0.pdf Размер: 529,4 [КБ]
Принципиальные схемы - прочее
Схема подключения управления электрозащелкой с помощью брелка и кодовой клавиатуры на примере блока питания Урмет 18А1 18A1_connecting_umb100_sl1000 Размер: 573,3 [КБ]
Схема, показывающая модификацию установки переговорного устройства для использования только 4 yy между переговорным устройством и блоком питания EWD-10 домофон_установка_на_4_зылы размер: 152.6 [КБ]
Подробное описание клемм радиоконтроллера UMB100HS umb100hs_zaciski.pdf размер: 67,4 [КБ]
.

Системы дымоудаления. Противопожарные установки и системы

Противопожарная защита всегда имела первостепенное значение. Огонь, как неконтролируемое явление, нигде не приветствуется. Также сопутствующий дым и продукты горения являются наиболее нежелательным гостем различных типов помещений специального назначения, таких как серверные, компьютерные, ЭТО и т. д. При возникновении пожара это вызывает материальные убытки, вызывает простои в работе устройств. и останавливает технологические процессы.Часто причиной потерь и повреждений является не только пожар, но и неправильно подобранная система обнаружения или пожаротушения. Есть некоторые помещения, которые необходимо защитить с помощью специальных систем пожарного наблюдения. Такой системой является система отсоса очень раннего обнаружения дыма – система отсоса дыма.

Аспирационные системы обнаружения пожара

представляют собой активные устройства обнаружения, которые непрерывно отбирают пробы воздуха из контролируемого помещения с помощью всасывающего вентилятора и транспортируют их по системе трубопроводов к модулю обнаружения.Системы аспирации особенно используются, когда требуется максимальная чувствительность обнаружения или на объектах, где нельзя использовать точечные дымовые извещатели из-за суровых условий окружающей среды. Примеры включают очень высокие помещения, такие как многоярусные склады, а также районы с очень высоким уровнем загрязнения воздуха, например, промышленные объекты или свалки. Также эстетические соображения могут принять решение об установке систем аспирации, когда требуется полностью скрыть установку, напримерв пространстве подвесного потолка или в каркасе системных стен и стеклянных крыш, где трубник может быть полностью скрыт. При защите машин и крупных технологических установок аспирационные системы имеют особое преимущество перед точечными извещателями, так как они позволяют осуществлять активный отбор проб воздуха из различных труднодоступных мест без зависимости обнаружения от конвективного движения задымленного воздуха. Еще одно классическое применение аспирационных систем — защита технических помещений, серверных и телефонных станций, где требуется максимально раннее обнаружение пожароопасной ситуации при затрудненном доступе и обнаружении с помощью мощной механической вентиляции.Другие области применения, где лучший способ защитить себя — взять пробы воздуха и транспортировать их для обнаружения к удаленному детектору, — это чистые помещения, трансформаторные подстанции и склады глубокой заморозки.

Модульная конструкция

Обнаружение дыма во всасываемом воздухе осуществляется модульным извещателем. Настройка и сборка модулей детектирования в извещателе производится без использования каких-либо инструментов. Настройки меняются сменой переключателей и перемычек, а системные кабели соединяются удобными шлейфами.Модули обнаружения доступны в нескольких версиях с чувствительностью до 0,05%/м. Таким образом, можно настроить правильный детектор с параметрами, точно соответствующими предполагаемому применению.

Системы трубопроводов

Возможные схемы расположения и длины секций труб подробно описаны в инструкции по монтажу. Максимальная дальность действия труб может составлять 180 м для каждого из модулей обнаружения, а извещатель с двумя модулями может защитить до 760 м2.Калибровка диаметров пробоотборных отверстий предельно проста благодаря использованию готовых фольгированных наклеек, точно калибрующих диаметры предварительно сделанного большого отверстия.

Прямой контур esserbus® и esserbus® Plus

Детекторы

Titanus работают непосредственно в контурах обнаружения систем пожарной сигнализации esserbus® и esserbus® Plus Esser, взаимодействуя с панелями IQ8Control более высокого уровня. Питание должно осуществляться от буферного источника питания, соответствующего PN EN 54-4.Конфигурация и управление возможны удаленно через программу установки Tools8000 и меню панели управления. Для ввода в эксплуатацию не требуется специального программирования, специальных программных средств или специального коммуникационного интерфейса. Titanus работает напрямую с блоками IQ8Control, из которых меню можно легко активировать, заблокировать и сбросить сигналы от детектора. Отдельные зоны/группы могут быть назначены каждому модулю обнаружения, а также отдельным сигналам тревоги и неисправности, о которых модуль может сообщать.В результате каждую секцию труб для отбора проб можно индивидуально контролировать на наличие аварийных сигналов и неисправностей.


Использование систем аспирации

Система аспирации используется в самых разных учреждениях. Вот несколько примеров его использования:

  • предсердия,
  • серверных,
  • Помещения ETO,
  • АТС
  • ,
  • церквей,
  • памятников,
  • музеев,
  • архивов,
  • библиотек,
  • многоярусные склады,
  • холодильные камеры,
  • помещения для сортировки мусора,
  • и многие другие.

Применение вытяжной системы для контроля основного и подпольного пространства в серверной:

Мониторинг коробки кондиционера или вентиляционного канала и принцип установки устройства:

Контроль отдельных устройств:

Надзор за пространством в памятниках и священных зданиях:

Надзор за атриумным помещением:

Защита для многоярусных стеллажей:

Надзор за высокими помещениями, напр.склады:

90 100

Надзор за лифтовыми шахтами:

Мы остаемся в вашем распоряжении, пожалуйста, свяжитесь с нами.

.

Смотрите также


 

Опрос
 

Кто вам делал ремонт в квартире?

Делал самостоятельно
Нанимал знакомых, друзей
Нашел по объявлению
Обращался в строй фирму

 
Все опросы
 
remnox.ru © 2012- Строительство и ремонт При копировании материалов ссылка на сайт обязательна!